Hi all,
I am running the hyperelastic demo. with first order functionspace, it was running perfectly,
but when I changed to second order, it gave error on out of memory, which does not make sense to me.
I am running on a machine with i7-4770K and 16 GB memory, mint 17.1. A double check using ***top***
in the terminal did not reveal any memory issue.
Any thoughts will be appreciated. Thanks.
Here's error infor:
Solving nonlinear variational problem.
Newton iteration 0: r (abs) = 6.943e+00 (tol = 1.000e-10) r (rel) = 1.000e+00 (tol = 1.000e-09)
UMFPACK V5.6.2 (Apr 25, 2013): ERROR: out of memory
Traceback (most recent call last):
File "/home/haibo/Research_Projects/Projects/Mech_Atria/Test_Poisson/Test_Mesh_degree.py", line 67, in <module>
form_compiler_parameters=ffc_options)
File "/usr/lib/python2.7/dist-packages/dolfin/fem/solving.py", line 297, in solve
_solve_varproblem(*args, **kwargs)
File "/usr/lib/python2.7/dist-packages/dolfin/fem/solving.py", line 345, in _solve_varproblem
solver.solve()
RuntimeError:
*** -------------------------------------------------------------------------
*** DOLFIN encountered an error. If you are not able to resolve this issue
*** using the information listed below, you can ask for help at
***
*** fenics@fenicsproject.org
***
*** Remember to include the error message listed below and, if possible,
*** include a *minimal* running example to reproduce the error.
***
*** -------------------------------------------------------------------------
*** Error: Unable to successfully call PETSc function 'KSPSolve'.
*** Reason: PETSc error code is: 76.
*** Where: This error was encountered inside /build/dolfin-k_QrtL/dolfin-1.6.0/dolfin/la/PETScLUSolver.cpp.
*** Process: 0
***
*** DOLFIN version: 1.6.0
*** Git changeset: unknown
*** -------------------------------------------------------------------------
[Finished in 895.5s with exit code 1]
[shell_cmd: python -u "/home/haibo/Research_Projects/Projects/Mech_Atria/Test_Poisson/Test_Mesh_degree.py"]
[dir: /home/haibo/Research_Projects/Projects/Mech_Atria/Test_Poisson]
[path: /usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games]
And here's the source code:
from dolfin import *
# Optimization options for the form compiler
parameters["form_compiler"]["cpp_optimize"] = True
ffc_options = {"optimize": True, \
# "quadrature_degree":2,\
"eliminate_zeros": True, \
"precompute_basis_const": True, \
"precompute_ip_const": True
}
# Create mesh and define function space
# mesh = UnitCubeMesh(24, 16, 16)
mesh = UnitCubeMesh(24,16,16)
V = VectorFunctionSpace(mesh, "Lagrange", 2)
# Mark boundary subdomians
left = CompiledSubDomain("near(x[0], side) && on_boundary", side = 0.0)
right = CompiledSubDomain("near(x[0], side) && on_boundary", side = 1.0)
# Define Dirichlet boundary (x = 0 or x = 1)
c = Expression(("0.0", "0.0", "0.0"))
r = Expression(("scale*0.0",
"scale*(y0 + (x[1] - y0)*cos(theta) - (x[2] - z0)*sin(theta) - x[1])",
"scale*(z0 + (x[1] - y0)*sin(theta) + (x[2] - z0)*cos(theta) - x[2])"),
scale = 0.5, y0 = 0.5, z0 = 0.5, theta = pi/3)
bcl = DirichletBC(V, c, left)
bcr = DirichletBC(V, r, right)
bcs = [bcl, bcr]
# Define functions
du = TrialFunction(V) # Incremental displacement
v = TestFunction(V) # Test function
u = Function(V) # Displacement from previous iteration
B = Constant((0.0, -0.5, 0.0)) # Body force per unit volume
T = Constant((0.1, 0.0, 0.0)) # Traction force on the boundary
# Kinematics
d = u.geometric_dimension()
I = Identity(d) # Identity tensor
F = I + grad(u) # Deformation gradient
C = F.T*F # Right Cauchy-Green tensor
# Invariants of deformation tensors
Ic = tr(C)
J = det(F)
# Elasticity parameters
E, nu = 10.0, 0.3
mu, lmbda = Constant(E/(2*(1 + nu))), Constant(E*nu/((1 + nu)*(1 - 2*nu)))
# Stored strain energy density (compressible neo-Hookean model)
psi = (mu/2)*(Ic - 3) - mu*ln(J) + (lmbda/2)*(ln(J))**2
# Total potential energy
Pi = psi*dx - dot(B, u)*dx - dot(T, u)*ds
# Compute first variation of Pi (directional derivative about u in the direction of v)
F = derivative(Pi, u, v)
# Compute Jacobian of F
J = derivative(F, u, du)
# Solve variational problem
solve(F == 0, u, bcs, J=J,
form_compiler_parameters=ffc_options)
# Save solution in VTK format
file = File("displacement_odr2.pvd");
file << u;
# Plot and hold solution
plot(u, mode = "displacement", interactive = True)