Hi, "hermitian" type is for eigenvalue problems $A x=\lambda x$ with $A$ hermitian. For your generalized eigenvalue problem $A x=\lambda M x$ the type should be generalized hermitian. The corresponding string is "gen_hermitian", see here.
Here's the minimal working example
from dolfin import *
mesh = UnitSquareMesh(10, 10)
V = FunctionSpace(mesh, 'CG', 1)
u = TrialFunction(V)
v = TestFunction(V)
a = inner(grad(u), grad(v))*dx + inner(u, v)*dx
m = inner(u, v)*dx
A, M = PETScMatrix(), PETScMatrix()
assemble(a, A)
assemble(m, M)
eigensolver = SLEPcEigenSolver(A,M)
eigensolver.parameters['spectrum'] = 'smallest real'
eigensolver.parameters['tolerance'] = 1.e-14
eigensolver.parameters['problem_type'] = 'gen_hermitian'
eigensolver.solve(5)
for i in range(eigensolver.get_number_converged()):
r, c, rx, cx = eigensolver.get_eigenpair(i)
print "%d: %g" % (i, r)