Hi
I am trying to understand how to progam the Discontinuous
Galerkin method for the 2D Euler equations.
\begin{equation}
\displaystyle \frac{\partial U}{\partial t}
+ \nabla \cdot F(U) = 0.
\end{equation}
An integration by part on a triangle $T_j$ of a mesh gives
\begin{equation}
\displaystyle \int_{T_j} W \frac{\partial U}{\partial t} dx
+
\displaystyle \int_{\partial T_j interior} W \cdot F(U) \cdot n ds
\end{equation}
\begin{equation}
\displaystyle \int_{\partial T_j on boundary} W \cdot F(U) \cdot n ds
-
\displaystyle \int_{T_j} \nabla W : F(U) dx
= 0
\end{equation}
Introducing the numetical scheme $H(U^-,U^+,n)$ to compute the fluxes $F(U).n$,
I get
\begin{equation}
\displaystyle \int_{T_j} W \frac{\partial U}{\partial t} dx
+
\displaystyle \int_{\partial T_j interior} W \cdot H(U^-,U^+,n) ds
\end{equation}
\begin{equation}
+
\displaystyle \int_{\partial T_j on boundary} W \cdot F(U) \cdot n ds
-
\displaystyle \int_{T_j} \nabla W : F(U) dx
= 0
\end{equation}
where $-$ stands for "inside $T_j$", $+$ stands for "outside $T_j$"
and $n$ for the outward normal to $T_j$. $W$ is the test function vector.
A summation over all triangle $T_j$ gives
\begin{equation}
\displaystyle \int_{\Omega} W \frac{\partial U}{\partial t} dx
+
\sum_j \displaystyle \int_{\partial T_j interior} W \cdot H(U^-,U^+,n) ds
\end{equation}
\begin{equation}
+
\displaystyle \int_{\partial \Omega} W\cdot F(U) \cdot n ds
-
\displaystyle \int_{\partial \Omega} \nabla W : F(U) dx
= 0
\end{equation}
Now I am not sur how I should write the integral on interior
facets in a fenics script for an explicite euler time scheme
\begin{equation}
\sum_j \displaystyle \int_{\partial T_j interior} W \cdot H(U^-,U^+,n) ds
\end{equation}