SyFi  0.3
SyFi::Nedelec Class Reference

#include <Nedelec.h>

Inheritance diagram for SyFi::Nedelec:
SyFi::StandardFE SyFi::FE

List of all members.

Public Member Functions

 Nedelec ()
 Nedelec (Polygon &p, int order=1)
virtual ~Nedelec ()
virtual void compute_basis_functions ()

Detailed Description

Definition at line 26 of file Nedelec.h.


Constructor & Destructor Documentation

Definition at line 30 of file Nedelec.cpp.

References SyFi::StandardFE::description.

                          : StandardFE()
        {
                description = "Nedelec";
        }
SyFi::Nedelec::Nedelec ( Polygon p,
int  order = 1 
)

Definition at line 35 of file Nedelec.cpp.

References compute_basis_functions().

virtual SyFi::Nedelec::~Nedelec ( ) [inline, virtual]

Definition at line 31 of file Nedelec.h.

{}

Member Function Documentation

Reimplemented from SyFi::StandardFE.

Definition at line 40 of file Nedelec.cpp.

References SyFi::bernstein(), SyFi::bernsteinv(), test_syfi::debug::c, SyFi::collapse(), SyFi::cross(), SyFi::StandardFE::description, SyFi::StandardFE::dofs, SyFi::homogenous_polv(), SyFi::inner(), SyFi::Line::integrate(), SyFi::Triangle::integrate(), SyFi::Tetrahedron::integrate(), SyFi::istr(), SyFi::Triangle::line(), SyFi::Tetrahedron::line(), SyFi::matrix_from_equations(), SyFi::normal(), SyFi::StandardFE::Ns, SyFi::StandardFE::order, SyFi::StandardFE::p, SyFi::pol2basisandcoeff(), SyFi::Line::repr(), SyFi::Polygon::str(), SyFi::t, SyFi::tangent(), SyFi::Tetrahedron::triangle(), SyFi::Polygon::vertex(), SyFi::x, SyFi::y, and SyFi::z.

Referenced by main(), and Nedelec().

        {

                // remove previously computed basis functions and dofs
                Ns.clear();
                dofs.clear();

                if ( order < 0 )
                {
                        throw(std::logic_error("Nedelec elements must be of order 0 or higher."));
                }

                if ( p == NULL )
                {
                        throw(std::logic_error("You need to set a polygon before the basisfunctions can be computed"));
                }

                if ( p->str().find("Line") != string::npos )
                {

                        cout <<"Can not define the Nedelec element on a line"<<endl;

                }
                else if ( p->str().find("Triangle") != string::npos )
                {

                        description = istr("Nedelec_", order) + "2D";

                        int k = order;
                        int removed_dofs=0;

                        Triangle& triangle = (Triangle&)(*p);
                        GiNaC::lst equations;
                        GiNaC::lst variables;

                        // create r
                        GiNaC::ex R_k = homogenous_polv(2,k+1, 2, "a");
                        GiNaC::ex R_k_x = R_k.op(0).op(0);
                        GiNaC::ex R_k_y = R_k.op(0).op(1);

                        // Equations that make sure that r*x = 0
                        GiNaC::ex rx = (R_k_x*x + R_k_y*y).expand();
                        exmap pol_map = pol2basisandcoeff(rx);
                        exmap::iterator iter;
                        for (iter = pol_map.begin(); iter != pol_map.end(); iter++)
                        {
                                if ((*iter).second != 0 )
                                {
                                        equations.append((*iter).second == 0 );
                                        removed_dofs++;
                                }
                        }

                        // create p
                        GiNaC::ex P_k = bernsteinv(2,k, triangle, "b");
                        GiNaC::ex P_k_x = P_k.op(0).op(0);
                        GiNaC::ex P_k_y = P_k.op(0).op(1);

                        // collect the variables of r and p  in one list
                        variables = collapse(GiNaC::lst(collapse(GiNaC::ex_to<GiNaC::lst>(R_k.op(1))),
                                collapse(GiNaC::ex_to<GiNaC::lst>(P_k.op(1)))));

                        // create the polynomial space
                        GiNaC::lst pspace = GiNaC::lst( R_k_x + P_k_x,
                                R_k_y + P_k_y);

                        int counter = 0;
                        GiNaC::symbol t("t");
                        GiNaC::ex dofi;
                        // dofs related to edges
                        for (int i=0; i< 3; i++)
                        {
                                Line line = triangle.line(i);
                                GiNaC::lst tangent_vec = tangent(triangle, i);
                                GiNaC::ex bernstein_pol = bernstein(order, line, istr("a",i));
                                GiNaC::ex basis_space = bernstein_pol.op(2);
                                GiNaC::ex pspace_t = inner(pspace, tangent_vec);

                                GiNaC::ex basis;
                                for (unsigned int j=0; j< basis_space.nops(); j++)
                                {
                                        counter++;
                                        basis = basis_space.op(j);
                                        GiNaC::ex integrand = pspace_t*basis;
                                        dofi =  line.integrate(integrand);
                                        GiNaC::ex eq = dofi == GiNaC::numeric(0);
                                        equations.append(eq);

                                        GiNaC::lst d = GiNaC::lst(GiNaC::lst(line.vertex(0), line.vertex(1)),j);
                                        dofs.insert(dofs.end(), d);

                                }
                        }

                        // dofs related to the whole triangle
                        GiNaC::lst bernstein_polv;
                        if ( order > 0)
                        {
                                counter++;
                                bernstein_polv = bernsteinv(2,order-1, triangle, "a");
                                GiNaC::ex basis_space = bernstein_polv.op(2);
                                for (unsigned int i=0; i< basis_space.nops(); i++)
                                {
                                        GiNaC::lst basis = GiNaC::ex_to<GiNaC::lst>(basis_space.op(i));
                                        GiNaC::ex integrand = inner(pspace, basis);
                                        dofi = triangle.integrate(integrand);
                                        GiNaC::ex eq = dofi == GiNaC::numeric(0);
                                        equations.append(eq);

                                        GiNaC::lst d = GiNaC::lst(GiNaC::lst(triangle.vertex(0), triangle.vertex(1), triangle.vertex(2)), i);
                                        dofs.insert(dofs.end(), d);
                                }
                        }

                        // invert the matrix:
                        // GiNaC has a bit strange way to invert a matrix.
                        // It solves the system AA^{-1} = Id.
                        // It seems that this way is the only way to do
                        // properly with the solve_algo::gauss flag.
                        GiNaC::matrix b; GiNaC::matrix A;
                        matrix_from_equations(equations, variables, A, b);

                        unsigned int ncols = A.cols();
                        GiNaC::matrix vars_sq(ncols, ncols);

                        // matrix of symbols
                        for (unsigned r=0; r<ncols; ++r)
                                for (unsigned c=0; c<ncols; ++c)
                                        vars_sq(r, c) = GiNaC::symbol();

                        GiNaC::matrix id(ncols, ncols);

                        // identity
                        const GiNaC::ex _ex1(1);
                        for (unsigned i=0; i<ncols; ++i)
                                id(i, i) = _ex1;

                        // invert the matrix
                        GiNaC::matrix m_inv(ncols, ncols);
                        m_inv = A.solve(vars_sq, id, GiNaC::solve_algo::gauss);

                        for (unsigned int i=0; i<dofs.size(); i++)
                        {
                                b.let_op(removed_dofs + i) = GiNaC::numeric(1);
                                GiNaC::ex xx = m_inv.mul(GiNaC::ex_to<GiNaC::matrix>(b));

                                GiNaC::lst subs;
                                for (unsigned int ii=0; ii<xx.nops(); ii++)
                                {
                                        subs.append(variables.op(ii) == xx.op(ii));
                                }
                                GiNaC::ex Nj1 = pspace.op(0).subs(subs);
                                GiNaC::ex Nj2 = pspace.op(1).subs(subs);
                                Ns.insert(Ns.end(), GiNaC::matrix(2,1,GiNaC::lst(Nj1,Nj2)));
                                b.let_op(removed_dofs + i) = GiNaC::numeric(0);
                        }

                }
                else if ( p->str().find("Tetrahedron") != string::npos )
                {

                        description = istr("Nedelec_", order) + "3D";

                        int k = order;
                        int removed_dofs=0;

                        Tetrahedron& tetrahedron= (Tetrahedron&)(*p);
                        GiNaC::lst equations;
                        GiNaC::lst variables;

                        // create r
                        GiNaC::ex R_k = homogenous_polv(3,k+1, 3, "a");
                        GiNaC::ex R_k_x = R_k.op(0).op(0);
                        GiNaC::ex R_k_y = R_k.op(0).op(1);
                        GiNaC::ex R_k_z = R_k.op(0).op(2);

                        // Equations that make sure that r*x = 0
                        GiNaC::ex rx = (R_k_x*x + R_k_y*y + R_k_z*z).expand();
                        exmap pol_map = pol2basisandcoeff(rx);
                        exmap::iterator iter;
                        for (iter = pol_map.begin(); iter != pol_map.end(); iter++)
                        {
                                if ((*iter).second != 0 )
                                {
                                        equations.append((*iter).second == 0 );
                                        removed_dofs++;
                                }
                        }

                        // create p
                        GiNaC::ex P_k = bernsteinv(3,k, tetrahedron, "b");
                        GiNaC::ex P_k_x = P_k.op(0).op(0);
                        GiNaC::ex P_k_y = P_k.op(0).op(1);
                        GiNaC::ex P_k_z = P_k.op(0).op(2);

                        // collect the variables of r and p  in one list
                        variables = collapse(GiNaC::lst(collapse(GiNaC::ex_to<GiNaC::lst>(R_k.op(1))),
                                collapse(GiNaC::ex_to<GiNaC::lst>(P_k.op(1)))));

                        // create the polynomial space
                        GiNaC::lst pspace = GiNaC::lst( R_k_x + P_k_x,
                                R_k_y + P_k_y,
                                R_k_z + P_k_z);

                        int counter = 0;
                        GiNaC::symbol t("t");
                        GiNaC::ex dofi;

                        // dofs related to edges
                        for (int i=0; i< 6; i++)
                        {
                                Line line = tetrahedron.line(i);
                                GiNaC::ex line_repr = line.repr(t);
                                GiNaC::lst tangent_vec = GiNaC::lst(line_repr.op(0).rhs().coeff(t,1),
                                        line_repr.op(1).rhs().coeff(t,1),
                                        line_repr.op(2).rhs().coeff(t,1));

                                GiNaC::ex bernstein_pol = bernstein(order, line, istr("a",i));
                                GiNaC::ex basis_space = bernstein_pol.op(2);
                                GiNaC::ex pspace_t = inner(pspace, tangent_vec);

                                GiNaC::ex basis;
                                for (unsigned int j=0; j< basis_space.nops(); j++)
                                {
                                        counter++;
                                        basis = basis_space.op(j);
                                        GiNaC::ex integrand = pspace_t*basis;
                                        dofi =  line.integrate(integrand);
                                        GiNaC::ex eq = dofi == GiNaC::numeric(0);
                                        equations.append(eq);

                                        GiNaC::lst d = GiNaC::lst(GiNaC::lst(line.vertex(0), line.vertex(1)),j);
                                        dofs.insert(dofs.end(), d);

                                }
                        }

                        // dofs related to faces
                        if ( order > 0 )
                        {
                                for (int i=0; i< 4; i++)
                                {
                                        Triangle triangle = tetrahedron.triangle(i);
                                        GiNaC::ex bernstein_pol = bernsteinv(3,order-1, triangle, istr("b", i));
                                        GiNaC::ex basis_space = bernstein_pol.op(2);

                                        GiNaC::ex basis;
                                        GiNaC::lst normal_vec = normal(tetrahedron, i);
                                        GiNaC::ex pspace_n = cross(pspace, normal_vec);
                                        if ( normal_vec.op(0) != GiNaC::numeric(0) &&
                                                normal_vec.op(1) != GiNaC::numeric(0) &&
                                                normal_vec.op(2) != GiNaC::numeric(0) )
                                        {
                                                for (unsigned int j=0; j<basis_space.nops(); j++)
                                                {
                                                        basis = basis_space.op(j);
                                                        if ( basis.op(0) != 0 || basis.op(1) != 0 )
                                                        {
                                                                GiNaC::ex integrand = inner(pspace_n,basis);
                                                                if ( integrand != GiNaC::numeric(0) )
                                                                {
                                                                        dofi = triangle.integrate(integrand);
                                                                        GiNaC::ex eq = dofi == GiNaC::numeric(0);
                                                                        equations.append(eq);
                                                                }
                                                        }
                                                }

                                        }
                                        else
                                        {
                                                for (unsigned int j=0; j<basis_space.nops(); j++)
                                                {
                                                        basis = basis_space.op(j);
                                                        GiNaC::ex integrand = inner(pspace_n,basis);
                                                        if ( integrand != GiNaC::numeric(0) )
                                                        {
                                                                dofi = triangle.integrate(integrand);
                                                                GiNaC::ex eq = dofi == GiNaC::numeric(0);
                                                                equations.append(eq);
                                                        }
                                                }
                                        }
                                }
                        }

                        // dofs related to tetrahedron
                        if ( order > 1 )
                        {
                                GiNaC::ex bernstein_pol = bernsteinv(3,order-2, tetrahedron, istr("c", 0));
                                GiNaC::ex basis_space = bernstein_pol.op(2);
                                GiNaC::ex basis;
                                for (unsigned int j=0; j<basis_space.nops(); j++)
                                {
                                        basis = basis_space.op(j);
                                        GiNaC::ex integrand = inner(pspace,basis);
                                        dofi = tetrahedron.integrate(integrand);
                                        GiNaC::ex eq = dofi == GiNaC::numeric(0);
                                        equations.append(eq);

                                        GiNaC::lst d = GiNaC::lst(GiNaC::lst(tetrahedron.vertex(0), tetrahedron.vertex(1), tetrahedron.vertex(2), tetrahedron.vertex(3)), j);
                                        dofs.insert(dofs.end(), d);

                                }
                        }

                        // invert the matrix:
                        // GiNaC has a bit strange way to invert a matrix.
                        // It solves the system AA^{-1} = Id.
                        // It seems that this way is the only way to do
                        // properly with the solve_algo::gauss flag.
                        GiNaC::matrix b; GiNaC::matrix A;
                        matrix_from_equations(equations, variables, A, b);

                        unsigned int ncols = A.cols();
                        GiNaC::matrix vars_sq(ncols, ncols);

                        // matrix of symbols
                        for (unsigned r=0; r<ncols; ++r)
                                for (unsigned c=0; c<ncols; ++c)
                                        vars_sq(r, c) = GiNaC::symbol();

                        GiNaC::matrix id(ncols, ncols);

                        // identity
                        const GiNaC::ex _ex1(1);
                        for (unsigned i=0; i<ncols; ++i)
                                id(i, i) = _ex1;

                        // invert the matrix
                        GiNaC::matrix m_inv(ncols, ncols);
                        m_inv = A.solve(vars_sq, id, GiNaC::solve_algo::gauss);

                        for (unsigned int i=0; i<dofs.size(); i++)
                        {
                                b.let_op(removed_dofs + i) = GiNaC::numeric(1);
                                GiNaC::ex xx = m_inv.mul(GiNaC::ex_to<GiNaC::matrix>(b));

                                GiNaC::lst subs;
                                for (unsigned int ii=0; ii<xx.nops(); ii++)
                                {
                                        subs.append(variables.op(ii) == xx.op(ii));
                                }
                                GiNaC::ex Nj1 = pspace.op(0).subs(subs);
                                GiNaC::ex Nj2 = pspace.op(1).subs(subs);
                                GiNaC::ex Nj3 = pspace.op(2).subs(subs);
                                Ns.insert(Ns.end(), GiNaC::matrix(3,1,GiNaC::lst(Nj1,Nj2,Nj3)));
                                b.let_op(removed_dofs + i) = GiNaC::numeric(0);
                        }

                }

        }

The documentation for this class was generated from the following files:
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator