Hi, as far as I know this is not possible in a simple way. The problem is already at the first step of FEniCS chain - there is no operand for eigenvalues in UFL. I suggest you register this as a feature request. Alternatively you could try to make use of the following approach
from dolfin import *
mesh = UnitSquareMesh(10, 10)
V = VectorFunctionSpace(mesh, 'CG', 2)
u = interpolate(Expression(('x[0]', 'x[0]*x[1]'), degree=2), V)
F = Identity(2) + grad(u)
C = F*F.T
# Eigenvalues are roots of characteristic polynomial
# e**2 - tr(A)*e + det(A) = 0
def eig_plus(A): return (tr(A) + sqrt(tr(A)**2-4*det(A)))/2
def eig_minus(A): return (tr(A) - sqrt(tr(A)**2-4*det(A)))/2
# Check
S = FunctionSpace(mesh, 'CG', 2)
f0 = project(tr(C), S)
f = project(eig_plus(C)+eig_minus(C), S)
print (f0.vector()-f.vector()).norm('l2')
f0 = project(det(C), S)
f = project(eig_plus(C)*eig_minus(C), S)
print (f0.vector()-f.vector()).norm('l2')