Nektar++: A Progress Report

Spencer Sherwin, Chris Cantwell, Dave Moxey, Mike Kirby Department of Aeronautics, Imperial College London SCI Institute, University of Utah

Imperial College London

Dynamic pressure Re=100 000

Outline

- What are we doing?
- Optimizing our implementations
 - Variable p
 - Cloud computing

Nektar++:An h to p finite element framework

Provide an unified interface to an open environment which blends high- and low-order finite element methods.

Nektar++: <u>www.nektar.info</u>

Helmholtz problem:
$$\nabla^2 u + \lambda u = f$$

 \bigvee
Weak form + IBP: $-(\nabla u, \nabla v) + \lambda(u, v) + (\nabla u, v)|_{d\Omega} = (f, v)$

Mathematical Construction

Expose different discretisations (CG, DG) by combining and reusing low-level elemental mathematical constructs.

Retain and exploit domain symmetries and embeddings (homogeneous, cylindrical, manifold)

e.g. Laplace operator generalises to Laplace-Beltrami

e.g. Laplace operator generalises to Laplace-Beltrami

Direct Stability Analysis

Complex Geometry LNS & DNS

Mathematical Construction

Expose different discretisations (CG, DG) by combining and reusing low-level elemental mathematical constructs.

Retain and exploit domain symmetries and embeddings (homogeneous, cylindrical, manifold)

Computational Implementation

Challenge high-/low-order boundaries while maintaining efficiency.

 $\int L(u)vdx = 0$

What do we understand by low and high order?

Mathematical Construction

Expose different discretisations (CG, DG) by combining and reusing low-level elemental mathematical constructs.

Retain and exploit domain symmetries and embeddings (homogeneous, cylindrical, manifold)

Computational Implementation

Challenge high-/low-order boundaries while maintaining efficiency.

L(u)vdx = 0

Bridge current and future hardware diversity through hybrid implementation strategies.

Achieve flexible HPC scalability and performance through mixed parallelism.

Hybrid Numbering & Mixed Parallelisation

Outline

- What are we doing?
- Optimizing our implementations
 - From h to p efficiently
 - Variable p
 - Cloud Computing

Evaluation Strategies for iterative solvers

Computational results

• mass matrix operator: $\hat{g}_i = \sum (\Phi_i, \Phi_j)_\Omega \hat{f}_j \quad \forall i$

Vos, Sherwin, Kirby, JCP, 2010

Error vs computational cost?

• minimal run-time

Error vs computational cost?

minimal run-time

- path of optimal discretisations

Computational results: Non smooth solutionImperial College London

• minimal run-time - corner problem (error = 10⁻⁴)

Computational results

• minimal run-time - path of optimal discretisations

Outline

- What are we doing?
- Optimizing our implementations
 - Variable p
 - Cloud Computing

Local Matrix: Hardware diversity

London

Variable matrix size due to variable p

Variable P

How many parameters?

Hexahedral: 12 edges, 8 faces, 1 interior = 31 parameters Tetrahedral: 6 edges, 4 faces, 1 interior = 17 parameters

Tensor product design

Helmholtz example

P=4 P=8 P=12 P=17

LibHPC J. Cohen, P. Burovskiy, J. Darlington

- Target software on multi-core, distributed & hetrogeneous platforms
- Run on Infrastructure-as-a-service (laaS) clouds
- Why?
 - Intermittent running makes access to HPC difficult
 - Scale resource beyond local capacity

Summary

- Presented implementation optimisations to blend high and low order polynomial order
 - Mixed implementation of basic operators
 - Mixed Fourier discretisations.
- Does cloud computing offer possibilities?

