Nektar++: A Progress Report

Spencer Sherwin, Chris Cantwell, Dave Moxey, Mike Kirby *Department of Aeronautics, Imperial College London SCI Institute, University of Utah*

Imperial College London

Dynamic pressure Re=100 000

Outline

- What are we doing?
- Optimizing our implementations
	- Variable p
	- Cloud computing

Nektar++: An h to p finite element framework Computational Fluid GEORGE EM CARLIGAT

which blends high- and low-order finite element methods. *Provide an unified interface to an open environment*

Imperial College
London

Nektar++: www.nektar.info

Helmholtz problem:
\n
$$
\nabla^2 u + \lambda u = f
$$
\n
$$
\nabla^2 u + \lambda u = f
$$
\n
$$
\nabla^2 u + \lambda u = f
$$
\n
$$
\nabla^2 u + \lambda u = f
$$
\n
$$
\nabla^2 u + \lambda u = f
$$
\n
$$
\nabla^2 u + \lambda u = f
$$
\n
$$
\nabla^2 u + \lambda u = f
$$
\n
$$
\nabla^2 u + \lambda u = f
$$

Imperial College London

Imperial College London

Mathematical Construction

 $\int_{\Omega} L(u)v dx = 0$ Expose different discretisations (CG, DG) by combining and reusing low-level elemental mathematical constructs.

Retain and exploit domain symmetries and embeddings (homogeneous, cylindrical, manifold)

e.g. Laplace operator generalises to Laplace-Beltrami

e.g. Laplace operator generalises to Laplace-Beltrami

Direct Stability Analysis

Complex Geometry LNS & DNS

Imperial College London

Mathematical Construction

Expose different discretisations (CG, DG) by combining and reusing low-level elemental mathematical constructs.

Retain and exploit domain symmetries and embeddings (homogeneous, cylindrical, manifold)

Computational Implementation

Challenge high-/low-order boundaries while maintaining efficiency.

Complex geometry.

across current and future hardware?

Mathematical Construction

Expose different discretisations (CG, DG) by combining and reusing low-level elemental mathematical constructs.

Retain and exploit domain symmetries and embeddings (homogeneous, cylindrical, manifold)

Computational Implementation

Challenge high-/low-order boundaries while maintaining efficiency.

 $\int L(u)v dx = 0$

Bridge current and future hardware diversity through hybrid implementation strategies.

Achieve flexible HPC scalability and performance through mixed parallelism.

Hybrid Numbering & Mixed Parallelisation

Outline

- What are we doing?
- Optimizing our implementations
	- From h to p efficiently
	- Variable p
	- Cloud Computing

Evaluation Strategies for iterative solvers

Computational results

• mass matrix operator: $\hat{g}_i = \sum (\Phi_i, \Phi_j)_{\Omega} \hat{f}_j \quad \forall i$

Vos, Sherwin, Kirby, JCP, 2010

Error vs computational cost?

• minimal run-time

Error vs computational cost?

minimal run-time *Altermia in the systh of optimal discretisations*

Imperial College Computational results: Non smooth solution London

• minimal run-time - corner problem (error = 10⁻⁴)

Computational results

• minimal run-time - path of optimal discretisations

Outline

- What are we doing?
- Optimizing our implementations
	- Variable p
	- Cloud Computing

Local Matrix: Hardware diversity

London

Variable matrix size due to variable p

Variable P

Variable P Error Fixed P error

How many parameters?

Hexahedral: 12 edges, 8 faces, 1 interior = 31 parameters Tetrahedral: 6 edges, 4 faces, 1 interior = 17 parameters

Imperial College London

Tensor product design Spectral/hp element methods Sec. 4: Spectral/hp elements in 2D

Figure 17: Construction of a two-dimensional expansion basis from the tensor product of two Figure 17: Construction of a two-dimensional expansion of a two-dimensional expansion basis from the tensor product of two-dimensional expansion basis from the tensor product of two-dimension basis from the tensor product

Imperial College
London

Helmholtz example

P=4 P=8 P=12 P=17

Imperial College
London

LibHPC *J. Cohen, P. Burovskiy, J. Darlington*

- Target software on multi-core, distributed & hetrogeneous platforms
- Run on Infrastructure-as-a-service (IaaS) clouds
- Why?
	- Intermittent running makes access to HPC difficult
	- Scale resource beyond local capacity

Imperial College
London

with increasing polynomial order and additionally provided and additionally provided and additionally provided \overline{a} the high spatial resolution required for these simulations. Figure 5: Comparison of total runtime with native, virtual and libhpc deployment execution.

Summary

- Presented implementation optimisations to blend high and low order polynomial order
	- Mixed implementation of basic operators
	- Mixed Fourier discretisations.
- Does cloud computing offer possibilities?

