Implementation of a Geometric Multigrid Method for FEniCS and its Application

Felix Ospald

Chemnitz University of Technology, Faculty of Mathematics Research Group Numerical Mathematics (Partial Differential Equations)

FEniCS'13 Cambridge, UK March 18, 2013

Outline

1 Introduction to Geometric Multigrid (GMG)

2 Implementation

- **3** Numerical Results
- 4 Conclusion and Outlook

http://launchpad.net/fmg

Introduction to Geometric Multigrid (GMG)

Multigrid Idea Smoothing Restriction and Prolongation Multigrid and FEniCS

Overview

Multigrid methods are efficient solvers/preconditioners for linear or nonlinear systems of equations coming from a discretization of a (elliptic) PDE, i.e. find $u \in U$ such that

$$a(u,v) = f(v) \quad \forall v \in V,$$

or equivalently

Ax = b.

They have a numerical complexity of $\mathcal{O}(N)$, if used in the right way.

```
(U: trial space, V: test space)
```


Multigrid Idea Smoothing Restriction and Prolongation Multigrid and FEniCS

Multigrid Idea

Geometric multigrid is based on a fine-to-coarse grid/FE-space hierarchy of the problem.

Multigrid Idea Smoothing Restriction and Prolongation Multigrid and FEniCS

Multigrid Idea

Let x be some initial guess of the solution $x^* = A_1^{-1}b$.

- Reduce the high frequency components of the error $e = x^* x$ and residual $r = b - A_1 x$ by smoothing $x := S_1^{\nu_1}(x, b)$.
- Now the error/residual can be well approximated on the coarse grid as $r_0 = Rr$, by using the restriction operator $R : V'_1 \mapsto V'_0$.
- Solve the residual equation $A_0 e = r_0$ (on the coarse grid).
- Interpolate the error *e* onto the fine grid, by using the prolongation operator *P* : *U*₀ → *U*₁.
- Improve the current solution x := x + Pe
- Smooth again $x := S_2^{\nu_2}(x, b)$

Note: Residual Equation

$$r = b - A_1 x = (b - A_1 x) - (b - A_1 x^*) = A_1 (x^* - x) = A_1 e.$$

Multigrid Idea Smoothing Restriction and Prolongation Multigrid and FEniCS

The Two-Grid Method

This gives the two-grid method:

Algorithm 1: The two-grid method TGM(x, b).

 $x := S_1^{\nu_1}(x, b)$ // pre-smoothing $r_0 := R(b - A_1 x)$ // residual computation + restriction $e := A_0^{-1} r_0$ // solve coarse problem x := x + Pe // prolongation + correction step $x := S_2^{\nu_2}(x, b)$ // post-smoothing 6 return x

Applying the TGM recursively (solving the equation in line 3) gives the multi-grid method.

Multigrid Idea Smoothing Restriction and Prolongation Multigrid and FEniCS

Smoothing

Reduces the high frequency components of the error/residual.

Basic smoothers are of the form

$$\begin{aligned} x^{k+1} &= x^k + M^{-1}r^k, \\ r^{k+1} &= (I - AM^{-1})r^k, \\ e^{k+1} &= (I - M^{-1}A)e^k, \end{aligned}$$

 $e^{\kappa+1} = (I -$

where

 $M = \omega^{-1}I,$ $M = \omega^{-1}D,$ $M = \omega^{-1}D + L,$

for relaxed Richardson, for relaxed Jacobi, for relaxed Gauß-Seidel (SOR).

Multigrid Idea Smoothing Restriction and Prolongation Multigrid and FEniCS

Smoothing

Reduces the high frequency components of the error/residual.

Basic smoothers are of the form

$$\begin{aligned} x^{k+1} &= x^k + M^{-1}r^k, \\ r^{k+1} &= (I - AM^{-1})r^k, \\ e^{k+1} &= (I - M^{-1}A)e^k, \end{aligned}$$

r¹

where

$$\begin{split} M &= \omega^{-1} I, \\ M &= \omega^{-1} D, \\ M &= \omega^{-1} D + L, \end{split}$$

for relaxed Richardson, for relaxed Jacobi, for relaxed Gauß-Seidel (SOR).

Multigrid Idea Smoothing Restriction and Prolongation Multigrid and FEniCS

Smoothing

Reduces the high frequency components of the error/residual.

Basic smoothers are of the form

$$\begin{aligned} x^{k+1} &= x^k + M^{-1}r^k, \\ r^{k+1} &= (I - AM^{-1})r^k, \\ e^{k+1} &= (I - M^{-1}A)e^k, \end{aligned}$$

r²

where

$$\begin{split} M &= \omega^{-1} I, \\ M &= \omega^{-1} D, \\ M &= \omega^{-1} D + L, \end{split}$$

for relaxed Richardson, for relaxed Jacobi, for relaxed Gauß-Seidel (SOR).

Multigrid Idea Smoothing Restriction and Prolongation Multigrid and FEniCS

Smoothing

Reduces the high frequency components of the error/residual.

Basic smoothers are of the form

$$\begin{split} x^{k+1} &= x^k + M^{-1} r^k, \\ r^{k+1} &= (I - A M^{-1}) r^k, \\ e^{k+1} &= (I - M^{-1} A) e^k, \end{split}$$

where

- $M = \omega^{-1}I,$ $M = \omega^{-1}D,$ $M = \omega^{-1}D + L,$
- for relaxed Richardson, for relaxed Jacobi, for relaxed Gauß-Seidel (SOR).

Multigrid Idea Smoothing Restriction and Prolongation Multigrid and FEniCS

Smoothing

Reduces the high frequency components of the error/residual.

Basic smoothers are of the form

$$\begin{split} x^{k+1} &= x^k + M^{-1} r^k, \\ r^{k+1} &= (I - A M^{-1}) r^k, \\ e^{k+1} &= (I - M^{-1} A) e^k, \end{split}$$

where

- $M = \omega^{-1}I, \qquad \text{ff}$ $M = \omega^{-1}D, \qquad \text{ff}$ $M = \omega^{-1}D + L, \qquad \text{ff}$
 - for relaxed Richardson, for relaxed Jacobi, for relaxed Gauß-Seidel (SOR).

Multigrid Idea Smoothing Restriction and Prolongation Multigrid and FEniCS

Smoothing

Reduces the high frequency components of the error/residual.

Basic smoothers are of the form

$$\begin{split} x^{k+1} &= x^k + M^{-1} r^k, \\ r^{k+1} &= (I - A M^{-1}) r^k, \\ e^{k+1} &= (I - M^{-1} A) e^k, \end{split}$$

where

$$\begin{split} M &= \omega^{-1}I, & \text{for relaxed Richardson,} \\ M &= \omega^{-1}D, & \text{for relaxed Jacobi,} \\ M &= \omega^{-1}D + L, & \text{for relaxed Gauß-Seidel (SOR).} \end{split}$$

Multigrid Idea Smoothing Restriction and Prolongation Multigrid and FEniCS

Smoothing

Reduces the high frequency components of the error/residual.

Basic smoothers are of the form

$$\begin{aligned} x^{k+1} &= x^k + M^{-1}r^k, \\ r^{k+1} &= (I - AM^{-1})r^k, \\ e^{k+1} &= (I - M^{-1}A)e^k, \end{aligned}$$

Rr⁵

where

$$\begin{split} M &= \omega^{-1}I, & \text{for relaxed Richardson,} \\ M &= \omega^{-1}D, & \text{for relaxed Jacobi,} \\ M &= \omega^{-1}D + L, & \text{for relaxed Gauß-Seidel (SOR).} \end{split}$$

Multigrid Idea Smoothing Restriction and Prolongation Multigrid and FEniCS

Restriction and Prolongation

Transfer functions (solutions) and functionals (right hand sides) between two grids.

Prolongation: Interpolate a function from U_0 to U_1 . Since $U_0 \subset U_1$ it is obvious to use the injection $i_U : U_0 \hookrightarrow U_1$ for P. **Restriction:** Restrict a functional from V'_1 to V'_0 . Since $V_0 \subset V_1$ it seems to be natural to use the restriction $\circ i_V$ for R (i.e.

 $Rr = r \circ i_V$ with the injection $i_V : V_0 \hookrightarrow V_1$).

Multigrid Idea Smoothing Restriction and Prolongation Multigrid and FEniCS

Multigrid and FEniCS

FEniCS already comes with some algebraic multigrid (AMG) preconditioners via PETSc (Hypre, Sandia ML).

Difference between AMG and GMG

AMG preconditioners only get the matrix A_1 and derive some A_0 , P, R, etc. from this matrix (black box solver). In contrast to GMG, AMG does not use information about the FE-spaces, which is actually available in FEniCS.

Since it is very easy to construct problem hierarchies in FEniCS, it is very reasonable to use GMG methods in FEniCS.

Implementation

Overview Classes Code Examples (C++)

Features

- language: C++
- easily useable and extendable
- relatively fast
- works for all nested FE-families in FEniCS (excludes Crouzeix-Raviart)
- can be used as iterative multigrid solver and preconditioner for Krylov-subspace methods (CG, MINRES, ...)
- supports uniform and local mesh refinement

Overview Classes Code Examples (C++)

Classes

Overview Classes Code Examples (C++)

Code Examples (C++)

How to do it with DOLFIN

```
LinearVariationalProblem problem(a, L, u, bc);
LinearVariationalSolver solver(problem);
solver.solve();
plot(problem.solution());
```

Using FMG

```
#include <fmg.h>
...
LinearVariationalProblem problem(a, L, u, bc);
fmg::MultigridPreconditionedKrylovSolver solver(problem, 4);
solver.solve();
plot(solver.solution());
...
```


Overview Classes Code Examples (C++)

Code Examples (C++)

Advanced Example

```
...
LinearVariationalProblem problem(a, L, u, bc);
fmg::MultigridProblem mg_problem(problem);
mg_problem.adapt();
mg_problem.adapt();
...
fmg::MultigridSolver mg_solver(mg_problem);
mg_solver.parameters["pre_smoother"] = "jacobi";
mg_solver.parameters["pre_smoother_relax"] = 0.6
```

mg_solver.parameters["pre_smoother_relax"] = 0.6; mg_solver.parameters["post_smoother"] = "jacobi"; mg_solver.parameters["post_smoother_relax"] = 0.6; mg_solver.parameters["coarse_solver_type"] = "lu"; solver.solve();

Overview Classes Code Examples (C++)

Code Examples (C++)

Performance Testing

```
...
LinearVariationalProblem problem(a, L, u, bc);
```

```
fmg::Tests tests(problem);
```

```
tests.parameters["test_solver"] = "cg+fmg,cg+hypre_amg";
tests.parameters["test_smoothers"] = "jacobi@0.6,fsor+bsor";
tests.parameters["num_refinements"] = 4;
tests.parameters.parse(argc, argv);
```

```
tests.run();
```

Command line call:

```
./main --num_refinements 5 --table_format latex
```

Numerical Results

Poisson Problem (2D) Linear Elasticity (3D) Stokes Problem (2D)

Numerical Results

Comparison of

- FMG GMG,
- Hypre AMG (PETSc preconditioner),
- ML AMG (PETSc preconditioner),
- as a preconditioner for CG/MINRES in terms of
 - setup time (initialization of the coarse grid problems and grid transfer operators),
 - solve time,
 - number of iterations

Poisson Problem (2D) Linear Elasticity (3D) Stokes Problem (2D)

Numerical Results

- Poisson problem (2D)
- Iinear Elasticity (3D)
- Stokes problem (2D)

Poisson Problem (2D) Linear Elasticity (3D) Stokes Problem (2D)

Poisson Problem (2D)

Poisson problem with mixed boundary conditions (FEniCS demo):

$$\begin{split} -\Delta u &= f \quad \text{in } \Omega, \\ u &= 0 \quad \text{on } \Gamma_D, \\ \frac{\partial u}{\partial n} &= g \quad \text{on } \Gamma_N, \end{split}$$

where

ł

$$\Omega = (0,1) \times (0,1),$$

$$\Gamma_D = \{(x,y) \in \partial\Omega : x = 0 \lor x = 1\},$$

$$\Gamma_N = \partial\Omega \setminus \Gamma_D,$$

$$f(x,y) = 10 \exp(-((x - 0.5)^2 + (y - 0.5)^2)/0.02),$$

$$g(x,y) = \sin(5x).$$

Poisson Problem (2D) Linear Elasticity (3D) Stokes Problem (2D)

Poisson Problem (2D)

Test Parameters

- discretization: P1, P2, P3 and P4 Lagrange-Elements
- coarse grid: 12x12 (P1), 6x6 (P2), 4x4 (P3), 3x3 (P4) UnitSquare
- 8 refinements
- symmetric Gauss-Seidel smoother (SSOR with $\omega=1)$
- V-cycle scheme
- termination criteria for PCG: $||C^{-1}r||/||C^{-1}b|| < 10^{-6}$

Poisson Problem (2D) Linear Elasticity (3D) Stokes Problem (2D)

Normalized Setup Time / DOF (P1)

Poisson Problem (2D) Linear Elasticity (3D) Stokes Problem (2D)

Normalized Setup Time / DOF (P2)

Poisson Problem (2D) Linear Elasticity (3D) Stokes Problem (2D)

Normalized Setup Time / DOF (P3)

Poisson Problem (2D) Linear Elasticity (3D) Stokes Problem (2D)

Normalized Setup Time / DOF (P4)

Poisson Problem (2D) Linear Elasticity (3D) Stokes Problem (2D)

Normalized Solve Time / DOF (P1)

Poisson Problem (2D) Linear Elasticity (3D) Stokes Problem (2D)

Normalized Solve Time / DOF (P2)

Poisson Problem (2D) Linear Elasticity (3D) Stokes Problem (2D)

Normalized Solve Time / DOF (P3)

Poisson Problem (2D) Linear Elasticity (3D) Stokes Problem (2D)

Normalized Solve Time / DOF (P4)

Poisson Problem (2D) Linear Elasticity (3D) Stokes Problem (2D)

Number of PCG Iterations (P1)

Poisson Problem (2D) Linear Elasticity (3D) Stokes Problem (2D)

Number of PCG Iterations (P2)

Poisson Problem (2D) Linear Elasticity (3D) Stokes Problem (2D)

Number of PCG Iterations (P3)

Poisson Problem (2D) Linear Elasticity (3D) Stokes Problem (2D)

Number of PCG Iterations (P4)

Poisson Problem (2D) Linear Elasticity (3D) Stokes Problem (2D)

Linear Elasticity (3D)

$$\begin{aligned} \operatorname{div}(\sigma(u)) + f &= 0 \quad \text{in } \Omega, \\ \sigma(u) \cdot n &= 0 \quad \text{on } \Gamma_N, \\ u &= 0 \quad \text{on } \Gamma_D, \end{aligned}$$

with isotropic material law

$$\sigma(u) = 2 \,\mu \,\epsilon(u) + \lambda \operatorname{tr}(\epsilon(u)) \,I,$$

and with the deformation

$$\epsilon(u) = \frac{1}{2} \left(\operatorname{grad}(u) + \operatorname{grad}(u)^T \right).$$

(λ , $\mu > 0$: Lamé parameters)

Poisson Problem (2D) Linear Elasticity (3D) Stokes Problem (2D)

Linear Elasticity (3D)

Test Parameters

$$\Omega = a^{3} \setminus (a \times b^{2} \cup b \times a \times b \cup b^{2} \times a)$$
$$a = (0, 1), b = (1/6, 5/6)$$
$$f(x, y, z) = \vec{e_{z}} \begin{cases} -10 \exp(2z + y) & : x \ge 5/6\\ 0 & : \text{ else} \end{cases}$$
$$\Gamma_{D} = \{(x, y, z) \in \overline{\Omega} : x = 0\}$$

Poisson Problem (2D) Linear Elasticity (3D) Stokes Problem (2D)

Deformation (Refinement 0)

Poisson Problem (2D) Linear Elasticity (3D) Stokes Problem (2D)

Deformation (Refinement 1)

Poisson Problem (2D) Linear Elasticity (3D) Stokes Problem (2D)

Deformation (Refinement 2)

Poisson Problem (2D) Linear Elasticity (3D) Stokes Problem (2D)

Deformation (Refinement 3)

Poisson Problem (2D) Linear Elasticity (3D) Stokes Problem (2D)

Solve Time and Number of PCG Iterations (P2)

Refinements	DOFs	FMG GMG Iterations	FMG GMG Solve Time	Hypre AMG Iterations	Hypre AMG Solve Time	ML AMG Iterations	ML AMG Solve Time
0	2 268	1	0.0357	64	0.353	94	0.198
1	12 900	7	0.102	113	8.33	193	2.55
2	84 564	7	0.703	218	215.	398	50.5
3	606 900	8	6.11				
4	4 586 868	8	48.3				

AMG does not work well for this problem !?

Poisson Problem (2D) Linear Elasticity (3D) Stokes Problem (2D)

Stokes Problem (2D)

$$\begin{aligned} -\mu\Delta u + \nabla p &= f & \text{in } \Omega, \\ \nabla \cdot u &= 0 & \text{in } \Omega, \\ u &= g & \text{on } \Gamma_D, \end{aligned}$$

results into the saddle point problem

$$egin{aligned} & a(u,v)+b(v,p)=f(v) & orall v\in H^1_0(\Omega)^2, \ & b(u,q) &= 0 & orall q\in L^2(\Omega)/\mathbb{R}, \end{aligned}$$

where

$$\begin{split} & \mathsf{a}(u,v) = \mu \int_{\Omega} \nabla u : \nabla v \, \mathrm{d}x, \\ & \mathsf{b}(v,p) = -\int_{\Omega} p \nabla \cdot v \, \mathrm{d}x, \quad f(v) = \int_{\Omega} f \, v \, \mathrm{d}x. \end{split}$$

Poisson Problem (2D) Linear Elasticity (3D) Stokes Problem (2D)

Stokes Problem (2D)

linear system of equations (Taylor-Hood elements):

$$\begin{pmatrix} A & B^T \\ B & 0 \end{pmatrix} \begin{pmatrix} u \\ p \end{pmatrix} = \begin{pmatrix} b \\ 0 \end{pmatrix}$$

MINRES preconditioning:

$$C = \begin{pmatrix} A & 0 \\ 0 & M \end{pmatrix}$$

M: mass matrix for pressure

M-block: LU-decomposition (small matrix) A-block: LU-decomposition, FMG GMG, Hypre AMG, ML AMG

Poisson Problem (2D) Linear Elasticity (3D) Stokes Problem (2D)

Stokes Problem (2D)

Test Parameters

$$\begin{split} \Omega &= ((0,1) \times (0.3,0.7)) \setminus (T_1 \cup T_2), \\ \Gamma_D &= \partial \Omega \setminus (\{1\} \times (0.3,0.7)), \\ g(x,y) &= \begin{cases} (\cos^2(\pi(y-0.5)/0.4), 0)^T & \text{für } x = 0 \\ (0,0)^T & \text{sonst.} \end{cases} \end{split}$$

Poisson Problem (2D) Linear Elasticity (3D) Stokes Problem (2D)

Solution (Velocity)

Poisson Problem (2D) Linear Elasticity (3D) Stokes Problem (2D)

Solution (Pressure)

Poisson Problem (2D) Linear Elasticity (3D) Stokes Problem (2D)

Normalized Solve Time / DOF

Poisson Problem (2D) Linear Elasticity (3D) Stokes Problem (2D)

Number of PCG Iterations

Conclusion and Outlook

Conclusion and Outlook

GMG works very well.

Things to do:

- reduce the solver setup time,
- enable parallel computing (prolongation, restriction),
- Python support (SWIG),
- customized smoothers,
- block preconditioning,
- FAS (nonlinear) multigrid,
- demos with mesh adaptivity,

• ...

Thank you for your attention!

http://launchpad.net/fmg