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Overview

Multigrid methods are efficient solvers/preconditioners for linear or
nonlinear systems of equations coming from a discretization of a
(elliptic) PDE, i.e. find u ∈ U such that

a(u, v) = f (v) ∀v ∈ V ,

or equivalently

Ax = b.

They have a numerical complexity of O(N), if used in the right
way.

(U: trial space, V: test space)
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Multigrid Idea

Geometric multigrid is based on a fine-to-coarse grid/FE-space
hierarchy of the problem.

U1,V1

matrix: A1, rhs: b

U0 ⊂ U1,V0 ⊂ V1

matrix: A0
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Multigrid Idea

Let x be some initial guess of the solution x∗ = A−1
1 b.

1 Reduce the high frequency components of the error e = x∗− x
and residual r = b − A1x by smoothing x := Sν1

1 (x , b).

2 Now the error/residual can be well approximated on the coarse
grid as r0 = Rr , by using the restriction operator R : V ′1 7→ V ′0.

3 Solve the residual equation A0e = r0 (on the coarse grid).

4 Interpolate the error e onto the fine grid, by using the
prolongation operator P : U0 7→ U1.

5 Improve the current solution x := x + Pe

6 Smooth again x := Sν2
2 (x , b)

Note: Residual Equation

r = b − A1x = (b − A1x)− (b − A1x
∗) = A1(x∗ − x) = A1e.
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The Two-Grid Method

This gives the two-grid method:

Algorithm 1: The two-grid method TGM(x , b).

1 x := Sν1
1 (x , b) // pre-smoothing

2 r0 := R(b − A1x) // residual computation + restriction

3 e := A−1
0 r0 // solve coarse problem

4 x := x + Pe // prolongation + correction step

5 x := Sν2
2 (x , b) // post-smoothing

6 return x

Applying the TGM recursively (solving the equation in line 3) gives
the multi-grid method.
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Smoothing

Reduces the high frequency components of the error/residual.

Basic smoothers are of the form

xk+1 = xk + M−1rk ,

rk+1 = (I − AM−1)rk ,

ek+1 = (I −M−1A)ek ,

where

r0

M = ω−1I , for relaxed Richardson,

M = ω−1D, for relaxed Jacobi,

M = ω−1D + L, for relaxed Gauß-Seidel (SOR).
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Smoothing

Reduces the high frequency components of the error/residual.

Basic smoothers are of the form

xk+1 = xk + M−1rk ,

rk+1 = (I − AM−1)rk ,

ek+1 = (I −M−1A)ek ,

where

r1

M = ω−1I , for relaxed Richardson,

M = ω−1D, for relaxed Jacobi,

M = ω−1D + L, for relaxed Gauß-Seidel (SOR).
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Smoothing

Reduces the high frequency components of the error/residual.

Basic smoothers are of the form

xk+1 = xk + M−1rk ,

rk+1 = (I − AM−1)rk ,

ek+1 = (I −M−1A)ek ,

where

r2

M = ω−1I , for relaxed Richardson,

M = ω−1D, for relaxed Jacobi,

M = ω−1D + L, for relaxed Gauß-Seidel (SOR).
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Smoothing

Reduces the high frequency components of the error/residual.

Basic smoothers are of the form

xk+1 = xk + M−1rk ,

rk+1 = (I − AM−1)rk ,

ek+1 = (I −M−1A)ek ,

where

r3

M = ω−1I , for relaxed Richardson,

M = ω−1D, for relaxed Jacobi,

M = ω−1D + L, for relaxed Gauß-Seidel (SOR).
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Smoothing

Reduces the high frequency components of the error/residual.

Basic smoothers are of the form

xk+1 = xk + M−1rk ,

rk+1 = (I − AM−1)rk ,

ek+1 = (I −M−1A)ek ,

where

r4

M = ω−1I , for relaxed Richardson,

M = ω−1D, for relaxed Jacobi,

M = ω−1D + L, for relaxed Gauß-Seidel (SOR).
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Smoothing

Reduces the high frequency components of the error/residual.

Basic smoothers are of the form

xk+1 = xk + M−1rk ,

rk+1 = (I − AM−1)rk ,

ek+1 = (I −M−1A)ek ,

where

r5

M = ω−1I , for relaxed Richardson,

M = ω−1D, for relaxed Jacobi,

M = ω−1D + L, for relaxed Gauß-Seidel (SOR).
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Smoothing

Reduces the high frequency components of the error/residual.

Basic smoothers are of the form

xk+1 = xk + M−1rk ,

rk+1 = (I − AM−1)rk ,

ek+1 = (I −M−1A)ek ,

where

Rr5

M = ω−1I , for relaxed Richardson,

M = ω−1D, for relaxed Jacobi,

M = ω−1D + L, for relaxed Gauß-Seidel (SOR).
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Restriction and Prolongation

Transfer functions (solutions) and functionals (right hand sides)
between two grids.

V ′1

R

V ′0

U1

P

U0

Prolongation: Interpolate a function from U0 to U1. Since
U0 ⊂ U1 it is obvious to use the injection iU : U0 ↪→ U1 for P.

Restriction: Restrict a functional from V ′1 to V ′0. Since V0 ⊂ V1 it
seems to be natural to use the restriction ◦iV for R (i.e.
Rr = r ◦ iV with the injection iV : V0 ↪→ V1).
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Multigrid and FEniCS

FEniCS already comes with some algebraic multigrid (AMG)
preconditioners via PETSc (Hypre, Sandia ML).

Difference between AMG and GMG

AMG preconditioners only get the matrix A1 and derive some A0,
P, R, etc. from this matrix (black box solver). In contrast to
GMG, AMG does not use information about the FE-spaces, which
is actually available in FEniCS.

Since it is very easy to construct problem hierarchies in FEniCS, it
is very reasonable to use GMG methods in FEniCS.
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Features

language: C++

easily useable and extendable

relatively fast

works for all nested FE-families in FEniCS (excludes
Crouzeix-Raviart)

can be used as iterative multigrid solver and preconditioner for
Krylov-subspace methods (CG, MINRES, ...)

supports uniform and local mesh refinement
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Classes

MultigridPreconditionedKrylovSolver

MultigridPreconditioner

MultigridSolver

GenericLinearSolver MultigridProblem

MultigridLevel

R P A b x e . . .

PETScUserPreconditioner

PETScKrylovSolver
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Code Examples (C++)

How to do it with DOLFIN

. . .
L i n e a r V a r i a t i o n a l P r o b l e m problem ( a , L , u , bc ) ;
L i n e a r V a r i a t i o n a l S o l v e r s o l v e r ( problem ) ;
s o l v e r . s o l v e ( ) ;
p l o t ( problem . s o l u t i o n ( ) ) ;
. . .

Using FMG

#i n c l u d e <fmg . h>
. . .
L i n e a r V a r i a t i o n a l P r o b l e m problem ( a , L , u , bc ) ;
fmg : : M u l t i g r i d P r e c o n d i t i o n e d K r y l o v S o l v e r s o l v e r ( problem , 4 ) ;
s o l v e r . s o l v e ( ) ;
p l o t ( s o l v e r . s o l u t i o n ( ) ) ;
. . .
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Code Examples (C++)

Advanced Example

. . .
L i n e a r V a r i a t i o n a l P r o b l e m problem ( a , L , u , bc ) ;
fmg : : M u l t i g r i d P r o b l e m mg problem ( problem ) ;
mg problem . adapt ( ) ;
mg problem . adapt ( ) ;
. . .

fmg : : M u l t i g r i d S o l v e r m g s o l v e r ( mg problem ) ;
m g s o l v e r . p a r a m e t e r s [ "pre_smoother" ] = "jacobi" ;
m g s o l v e r . p a r a m e t e r s [ "pre_smoother_relax" ] = 0 . 6 ;
m g s o l v e r . p a r a m e t e r s [ "post_smoother" ] = "jacobi" ;
m g s o l v e r . p a r a m e t e r s [ "post_smoother_relax" ] = 0 . 6 ;
m g s o l v e r . p a r a m e t e r s [ "coarse_solver_type" ] = "lu" ;
s o l v e r . s o l v e ( ) ;
. . .

Felix Ospald (CUT) Implementation of a Geometric Multigrid Method for FEniCS and its Application 3/18/2013 12 / 31



Introduction to Geometric Multigrid (GMG)
Implementation

Numerical Results
Conclusion and Outlook

Overview
Classes
Code Examples (C++)

Code Examples (C++)

Performance Testing

. . .
L i n e a r V a r i a t i o n a l P r o b l e m problem ( a , L , u , bc ) ;

fmg : : T e s t s t e s t s ( problem ) ;

t e s t s . p a r a m e t e r s [ "test_solver" ] = "cg+fmg ,cg+hypre_amg" ;
t e s t s . p a r a m e t e r s [ "test_smoothers" ] = "jacobi@0.6,fsor+bsor" ;
t e s t s . p a r a m e t e r s [ "num_refinements" ] = 4 ;
t e s t s . p a r a m e t e r s . p a r s e ( argc , a r g v ) ;

t e s t s . run ( ) ;

Command line call:
./main --num_refinements 5 --table_format latex
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Numerical Results

Comparison of

FMG GMG,

Hypre AMG (PETSc preconditioner),

ML AMG (PETSc preconditioner),

as a preconditioner for CG/MINRES in terms of

setup time (initialization of the coarse grid problems and grid
transfer operators),

solve time,

number of iterations
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Numerical Results

1 Poisson problem (2D)

2 linear Elasticity (3D)

3 Stokes problem (2D)
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Poisson Problem (2D)

Poisson problem with mixed boundary conditions (FEniCS demo):

−∆u = f in Ω,

u = 0 on ΓD ,

∂u

∂n
= g on ΓN ,

where

Ω = (0, 1)× (0, 1),

ΓD = {(x , y) ∈ ∂Ω : x = 0 ∨ x = 1},
ΓN = ∂Ω \ ΓD ,

f (x , y) = 10 exp(−((x − 0.5)2 + (y − 0.5)2)/0.02),

g(x , y) = sin(5x).
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Poisson Problem (2D)

Test Parameters

discretization: P1, P2, P3 and P4 Lagrange-Elements

coarse grid: 12x12 (P1), 6x6 (P2), 4x4 (P3), 3x3 (P4)
UnitSquare

8 refinements

symmetric Gauss-Seidel smoother (SSOR with ω = 1)

V-cycle scheme

termination criteria for PCG: ||C−1r ||/||C−1b|| < 10−6
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Normalized Setup Time / DOF (P3)
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Normalized Setup Time / DOF (P4)
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Number of PCG Iterations (P4)
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Linear Elasticity (3D)

div(σ(u)) + f = 0 in Ω,

σ(u) · n = 0 on ΓN ,

u = 0 on ΓD ,

with isotropic material law

σ(u) = 2µ ε(u) + λ tr(ε(u)) I ,

and with the deformation

ε(u) =
1

2

(
grad(u) + grad(u)T

)
.

(λ, µ > 0: Lamé parameters)
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Linear Elasticity (3D)

Test Parameters

Ω = a3 \ (a× b2 ∪ b × a× b ∪ b2 × a)

a = (0, 1), b = (1/6, 5/6)

f (x , y , z) = ~ez

{
−10 exp(2z + y) : x ≥ 5/6

0 : else

ΓD = {(x , y , z) ∈ Ω : x = 0}
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0 2 268 1 0.0357 64 0.353 94 0.198

1 12 900 7 0.102 113 8.33 193 2.55

2 84 564 7 0.703 218 215. 398 50.5

3 606 900 8 6.11

4 4 586 868 8 48.3

AMG does not work well for this problem!?
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Stokes Problem (2D)

−µ∆u +∇p = f in Ω,

∇ · u = 0 in Ω,

u = g on ΓD ,

results into the saddle point problem

a(u, v) + b(v , p) = f (v) ∀ v ∈ H1
0 (Ω)2,

b(u, q) = 0 ∀ q ∈ L2(Ω)/R,

where

a(u, v) = µ

∫
Ω
∇u : ∇v dx ,

b(v , p) = −
∫

Ω
p∇ · v dx , f (v) =

∫
Ω
f v dx .
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Stokes Problem (2D)

linear system of equations (Taylor-Hood elements):(
A BT

B 0

)(
u
p

)
=

(
b
0

)
MINRES preconditioning:

C =

(
A 0
0 M

)
M: mass matrix for pressure

M-block: LU-decomposition (small matrix)
A-block: LU-decomposition, FMG GMG, Hypre AMG, ML AMG
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Stokes Problem (2D)

u = 0

u = 0

do nothingu = g

Test Parameters

Ω = ((0, 1)× (0.3, 0.7)) \ (T1 ∪ T2),

ΓD = ∂Ω \ ({1} × (0.3, 0.7)),

g(x , y) =

{
(cos2(π(y − 0.5)/0.4), 0)T für x = 0
(0, 0)T sonst.
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Conclusion and Outlook

GMG works very well.

Things to do:

reduce the solver setup time,

enable parallel computing (prolongation, restriction),

Python support (SWIG),

customized smoothers,

block preconditioning,

FAS (nonlinear) multigrid,

demos with mesh adaptivity,

...
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Thank you for your attention!

http://launchpad.net/fmg

http://launchpad.net/fmg
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