
Partitioning and numbering meshes for efficient
MPI-parallel execution in PyOP2

Lawrence Mitchell, Mark Filipiak1

Tuesday 18th March 2013

1lawrence.mitchell@ed.ac.uk, mjf@epcc.ed.ac.uk
1



Outline

Numbering to be cache friendly

Numbering for parallel execution

Hybrid shared memory + MPI parallelisation

2



Modern hardware

I Latency to RAM is 100s of clock cycles
I Multiple caches to hide this latency

I memory from RAM arrives in cache lines (64 bytes, 128 bytes
on Xeon Phi)

I hardware prefetching attempts to predict next memory access

3



Exploiting hardware caches in FE assembly

I Direct loops over mesh entities are cache-friendly
I indirect loops may not be

I can we arrange them to be cache friendly?

4



A mesh

5



Cache friendly visit order (default numbering)

6



Cache friendly visit order (default numbering)

6



Cache friendly visit order (default numbering)

6



Mesh entity numbering is critical

I arrange for “connected” vertices to have a good numbering
(close to each other)

I given this good numbering
I derive numberings for other entities

7



Numbering dofs
I Cover mesh with space-filling curve

I vertices that are close to each other get close numbers

8



Other entities
I construct additional entities with some numbering
I sort them and renumber lexicographically keyed on sorted list

of vertices they touch
I do this every time the mesh topology changes

I (doesn’t work yet)

9



Comparing

10



Does it work?

I In Fluidity
I P1 problems get around 15% speedup

I In PyOP2
I GPU/OpenMP backends get 2x-3x speedup (over badly

numbered case)
I Fluidity kernels provoke cache misses in other ways

11



Iteration in parallel

I Mesh distributed between MPI processes
I communicate halo data
I would like to overlap computation and communication

12



Picture

13



Comp/comms overlap

I entities that need halos can’t be assembled until data has
arrived

I can assemble the other entities already

start_halo_exchanges()
for e in entities:

if can_assemble(e):
assemble(e)

finish_halo_exchanges()
for e in entities:

if still_needs_assembly(e):
assemble(e)

14



Making this cheap

I separate mesh entities into groups

start_halo_exchanges()
for e in core_entities:

assemble(e)
finish_halo_exchanges()
for e in additional_entities:

assemble(e)

15



PyOP2 groups

I Core entities
I can assemble these without halo data

I Owned entities
I local, but need halo data

I Exec halo
I off-process, but redundantly executed over (touch local dofs)

I Non-exec halo
I off-process, needed to compute exec halo

16



Why like this?

I GPU execution
I launch separate kernels for core and additional entities
I no branching in kernel to check if entity may be assembled

I Defer halo exchange as much as possible (lazy evaluation)

17



How to separate the entities

I separate data structures for different parts
I possible, but hurts direct iterations, and is complicated

I additional ordering constraint
I core, owned, exec, non-exec
I implemented in Fluidity/PyOP2
I each type of mesh entity stored contiguously, obeying this

ordering

18



Hybrid shared memory + MPI parallelisation

I On boundary, assembling off-process entities can contribute to
on-process dofs

I how to deal with this?
I use linear algebra library that can deal with it
I e.g. PETSc allows insertion and subsequent communication of

off-process matrix and vector entries

I Not thread safe

19



Solution

I Do redundant computation
I this is the default PyOP2 computation model

I Maintain larger halo
I assemble all entities that touch local dofs

I turn off PETSc off-process insertion

20



Picture

21



Multiple gains

I You probably did the halo swap anyway
I this makes form assembly non-communicating

I we’ve seen significant (40%) benefit on 1000s of processes
(Fluidity only)

I thread safety!

22



Thread safety

I Concurrent insertion into MPI PETSc matrices is thread safe
if:

I there’s no off-process insertion caching
I user deals with concurrent writes to rows

I colour the local sparsity pattern

23



Corollary

I It is possible to do hybrid MPI/OpenMP assembly with
existing linear algebra libraries

I implemented (and tested!) in PyOP2
I Ongoing work to add more shared memory parallisation in

kernels in PETSc
I PETSc team
I Michael Lange (Imperial)

24



Conclusions

I With a bit a of work, we can make unstructured mesh codes
reasonably cache friendly

I For good strong scaling, we’d like to overlap computation and
communication as much as possible, but cheaply

I We think the approaches here work, and are implemented in
Fluidity/PyOP2

25



Acknowledgements

I Hilbert reordering in Fluidity:
I Mark Filipiak (EPCC) [a dCSE award from EPSRC/NAG]

I Lexicographic mesh entity numbering and ordering in Fluidity:
I David Ham (Imperial), and me (prodding him along the way)

I PyOP2 MPI support:
I me (EPCC) [EU FP7/277481 (APOS-EU)]
I ideas from Mike Giles and Gihan Mudalige (Oxford)

I MAPDES team:
I funding (EPSRC grant EP/I00677X/1, EP/I006079/1)

26


	Numbering to be cache friendly
	Numbering for parallel execution
	Hybrid shared memory + MPI parallelisation

