Shear Banding in the Earth's Mantle

Laura Alisic

Bullard Laboratories University of Cambridge

With John Rudge, Garth Wells, Richard Katz, Sander Rhebergen, Andy Wathen

FEniCS'13, 19 March 2013

Mantle convection

Hot fluid mantle is heated from below, cooled at the top Convection drives cold stiff plates \rightarrow Coupled system

[[] U. Alberta]

Ridges and subduction zones

- Plates created at mid-oceanic ridges, move towards trenches, recycled in subduction zones
- Mantle properties determine plate motion

[Hirschmann & Kohlstedt, 2012]

Mantle-magma interaction important in subduction zones: melting in mantle wedge, formation of island arcs

Zooming in: convection and compaction

Deformation processes on mm scale influence large-scale features

Mantle is partially molten \rightarrow flow of magma through compacting and convecting porous matrix

Shear causes melt to segregate \rightarrow shear bands \rightarrow mechanism for larger-scale melt transport

[Holtzman et al, 2003]

Zooming in: convection and compaction

Compare numerical models with shear banding in laboratory experiments \rightarrow material properties?

Inclusion in porous medium under simple shear

Melt mapping in laboratory experiment: olivine + 10% MORB

[Chao Qi & David Kohlstedt]

Inclusion in porous medium under simple shear

- Is formation of shear bands dominant over compaction around the inclusion?
- What determines this balance?
- Is there asymmetry between melt enrichment and depletion?
- What affects this asymmetry?

ightarrow nonlinearity, viscosity ratios, total strain

Equations: Compaction and advection

Conservation of mass for the solid phase:

$$\frac{\partial \phi}{\partial t} + \mathbf{v_s} \cdot \nabla \phi = (1 - \phi) \nabla \cdot \mathbf{v_s} + \frac{\Gamma}{\rho_s}$$
(1)

Conservation of mass for the two-phase mixture:

$$\nabla \cdot \overline{\mathbf{v}} + \Gamma \Delta \left(\frac{1}{\rho}\right) = 0 \tag{2}$$

Conservation of momentum for the fluid:

$$\nabla \cdot (\phi \boldsymbol{\sigma}_{f}) + \phi \rho_{f} \mathbf{g} - \mathbf{F} = \mathbf{0}$$
(3)

Conservation of momentum for the solid:

$$\nabla \cdot ((1-\phi)\boldsymbol{\sigma}_s) + (1-\phi)\rho_s \mathbf{g} + \mathbf{F} = \mathbf{0}$$
(4)

Equations

Compaction and advection simplified:

$$\frac{\partial \phi}{\partial t} + \mathbf{v_s} \cdot \nabla \phi - (1 - \phi) \nabla \cdot \mathbf{v_s} = 0$$

$$\nabla \left(\frac{K_{\phi}}{2} \nabla B + \sigma \right) = 0$$
(5)

$$\nabla \cdot \left(-\frac{n_{\phi}}{\mu_f} \nabla P + \mathbf{v_s} \right) = 0 \tag{6}$$

$$\nabla P = \nabla \cdot \left(\eta_{\phi} (\nabla \mathbf{v_s} + \nabla \mathbf{v_s}^T) \right) + \nabla \cdot \left((\zeta_{\phi} - \frac{2}{3} \eta_{\phi}) \nabla \cdot \mathbf{v_s} \right)$$
(7)

[after McKenzie, 1984]

Porosity-dependent rheology

Permeability

$$K_{\phi} = \phi^2$$
 (8)
Bulk viscosity
 $\zeta_{\phi} = \frac{1}{\phi}$ (9)

Shear viscosity

$$\eta_{\phi} = \eta_0 \ e^{-\alpha(\phi - \phi_0)} \tag{10}$$

Compaction length

$$\delta_c = \sqrt{\frac{K_0}{\mu_f}} \left(\zeta_0 + \frac{4}{3}\eta_0\right) \tag{11}$$

Benchmark 1: Compaction around sphere

Analytical solution

$$\mathbf{v}_{s} = \left(-\frac{4D}{r^{4}} + \frac{2FK_{2}(r)}{r^{2}}\right) \underline{\mathbf{E}} \cdot \mathbf{x} + \left(-\frac{2C}{r^{4}} + \frac{8D}{r^{6}} - \frac{FK_{3}(r)}{r^{3}}\right) (\mathbf{x} \cdot \underline{\mathbf{E}} \cdot \mathbf{x})\mathbf{x}$$
(12)

$$C = -\frac{a^{4}K_{2}'(a)}{4\xi K_{1}(a) - a^{2}K_{2}'(a)},$$

$$D = \frac{a^{4}}{4} + \frac{4a^{3}\xi K_{2}(a)}{4\xi K_{1}(a) - a^{2}K_{2}'(a)},$$

$$(14)$$

$$F = \frac{8a\xi}{4\xi K_{1}(a) - a^{2}K_{2}'(a)},$$

$$(15)$$

$$F = \frac{3}{4\xi K_1(a) - a^2 K_2'(a)},\tag{15}$$

Benchmark 1: Compaction around sphere

Initial condition

$$\phi_i(x_i, y_i) = 1.0 + A\cos(k_0 x_i \sin(\theta_0) + k_0 y_i \cos(\theta_0))$$
(16)

Analytical growth rate of planar shear bands

$$\dot{s}_a = -2\alpha \xi \frac{(1-\phi_0)}{\phi_0} \frac{k_x k_y}{k^2 + 1}$$
(17)

Numerical growth rate

$$\dot{s}_n = \frac{(1-\phi_0)}{\phi_0 A} \,\nabla \cdot \mathbf{v_s} \tag{18}$$

[Spiegelman, 2003]

Porosity and velocity perturbation at $\gamma = 0$

Porosity and velocity perturbation at $\gamma=1.5$

Porosity and velocity perturbation at $\gamma=3.0$

Benchmark 2: Initial angle

Increase in initial angle of porosity perturbation

- Growth rate depends on initial shear band angle
- Fit analytical rates well

Benchmark 2: Perturbation amplitude

• Error increases for increasing perturbation amplitude • Small perturbation assumption breaks down $\gtrsim 10^{-2}$

Pressure shadows and shear bands

Initial porosity perturbation amplitude $10^{-3}\,$

Pressure shadows and shear bands

Initial porosity perturbation amplitude $10^{-2}\,$

Pressure shadows and shear bands

What affects relative importance?

- \blacksquare Nonlinearity of porosity dependence α
- Ratio of bulk to shear viscosity ζ_0/η_0
- Amplitude of initial perturbation A

