Design of optimal Runge-Kutta methods

David I. Ketcheson

King Abdullah University of Science & Technology (KAUST)

Some parts of this are joint work with:

- Aron Ahmadia
- Matteo Parsani

1 High order Runge-Kutta methods

2 Linear properties of Runge-Kutta methods

3 Nonlinear properties of Runge-Kutta methods

Putting it all together: some optimal methods and applications

1 High order Runge-Kutta methods

2 Linear properties of Runge-Kutta methods

Putting it all together: some optimal methods and applications

 $\Delta t \leq a \Delta x$

• Implicit methods don't usually help (due to reduced accuracy)

 $\Delta t \leq a \Delta x$

Implicit methods don't usually help (due to reduced accuracy)

• Strong scaling limits the effectiveness of spatial parallelism alone

 $\Delta t \leq a \Delta x$

- Implicit methods don't usually help (due to reduced accuracy)
- Strong scaling limits the effectiveness of spatial parallelism alone
- Strategy: keep Δx as large as possible by using high order methods

 $\Delta t \leq a \Delta x$

- Implicit methods don't usually help (due to reduced accuracy)
- Strong scaling limits the effectiveness of spatial parallelism alone
- Strategy: keep Δx as large as possible by using high order methods
- But: high order methods cost more and require more memory

 $\Delta t \leq a \Delta x$

- Implicit methods don't usually help (due to reduced accuracy)
- Strong scaling limits the effectiveness of spatial parallelism alone
- Strategy: keep Δx as large as possible by using high order methods
- But: high order methods cost more and require more memory
- Can we develop high order methods that are as efficient as lower order methods?

Using a different time integrator can:

• Reduce the number of RHS evaluations required

- Reduce the number of RHS evaluations required
- Alleviate timestep resrictions due to

- Reduce the number of RHS evaluations required
- Alleviate timestep resrictions due to
 - Linear stability

- Reduce the number of RHS evaluations required
- Alleviate timestep resrictions due to
 - Linear stability
 - Nonlinear stability

Using a different time integrator can:

- Reduce the number of RHS evaluations required
- Alleviate timestep resrictions due to
 - Linear stability
 - Nonlinear stability

Improve accuracy (truncation error, dispersion, dissipation)

- Reduce the number of RHS evaluations required
- Alleviate timestep resrictions due to
 - Linear stability
 - Nonlinear stability
- Improve accuracy (truncation error, dispersion, dissipation)
- Reduce storage requirements

To solve the initial value problem:

$$u'(t) = F(u(t)), \quad u(0) = u^0$$

a Runge-Kutta method computes approximations $u^n \approx u(n\Delta t)$:

$$y^{i} = u^{n} + \Delta t \sum_{j=1}^{i-1} a_{ij} F(y^{j})$$
$$u^{n+1} = u^{n} + \Delta t \sum_{j=1}^{s-1} b_{j} F(y^{j})$$

The accuracy and stability of the method depend on the coefficient matrix ${f A}$ and vector ${f b}$.

- An RK method builds up information about the solution derivatives through the computation of intermediate stages
- At the end of a step all of this information is thrown away!
- Use more stages \implies keep information around longer

High order Runge-Kutta methods

2 Linear properties of Runge-Kutta methods

Putting it all together: some optimal methods and applications

The Stability Function

For the linear equation

$$u' = \lambda u,$$

a Runge-Kutta method yields a solution

$$u^{n+1} = \phi(\lambda \Delta t) u^n,$$

where ϕ is called the stability function of the method:

$$\phi(z) = \frac{\det(\mathbf{I} - z(\mathbf{A} - \mathbf{e}\mathbf{b}^{\mathrm{T}}))}{\det(\mathbf{I} - z\mathbf{A})}$$

The Stability Function

For the linear equation

$$u' = \lambda u,$$

a Runge-Kutta method yields a solution

$$u^{n+1} = \phi(\lambda \Delta t) u^n,$$

where ϕ is called the stability function of the method:

$$\phi(z) = rac{\det(\mathbf{I} - z(\mathbf{A} - \mathbf{e}\mathbf{b}^{\mathrm{T}}))}{\det(\mathbf{I} - z\mathbf{A})}$$

Example: Euler's Method

$$u^{n+1} = u^n + \Delta t F(u); \quad \phi(z) = 1 + z.$$

The Stability Function

For the linear equation

$$u' = \lambda u,$$

a Runge-Kutta method yields a solution

$$u^{n+1} = \phi(\lambda \Delta t) u^n,$$

where ϕ is called the *stability function* of the method:

$$\phi(z) = rac{\det(\mathbf{I} - z(\mathbf{A} - \mathbf{e}\mathbf{b}^{\mathrm{T}}))}{\det(\mathbf{I} - z\mathbf{A})}$$

Example: Euler's Method

$$u^{n+1} = u^n + \Delta t F(u); \quad \phi(z) = 1 + z.$$

For explicit methods of order *p*:

$$\phi(z) = \sum_{j=0}^{p} \frac{1}{j!} z^{j} + \sum_{j=p+1}^{s} \alpha_{j} z^{j}.$$

For the linear equation

u'(t) = Lu

we say the solution is absolutely stable if $|\phi(\lambda \Delta t)| \leq 1$ for all $\lambda \in \sigma(L)$.

For the linear equation

$$u'(t) = Lu$$

we say the solution is absolutely stable if $|\phi(\lambda \Delta t)| \leq 1$ for all $\lambda \in \sigma(L)$. Example: **Euler's Method**

$$u^{n+1} = u^n + \Delta t F(u); \quad \phi(z) = 1 + z.$$

This leads naturally to the following problem.

Stability optimizationGiven L, p, s,maximize Δt subject to $|\phi(\Delta t\lambda)| - 1 \le 0$, $\lambda \in \sigma(L)$,where $\phi(z) = \sum_{j=0}^{p} \frac{1}{j!} z^j + \sum_{j=p+1}^{s} \alpha_j z^j$.

Here the decision variables are Δt and the coefficients α_j , $j = p + 1, \ldots, s$. This problem is quite difficult; we approximate its solution by solving a sequence of convex problems (DK & A. Ahmadia, arXiv preprint).

We could instead optimize accuracy over some region in $\ensuremath{\mathbb{C}}$:

Accuracy optimization

Given L, p, s,

$$\begin{array}{ll} \text{maximize} & \Delta t \\ \text{subject to} & |\phi(\Delta t\lambda) - \exp(\Delta t\lambda| \leq \epsilon, \qquad \lambda \in \sigma(L), \\ \text{where} & \phi(z) = \sum_{j=0}^p \frac{1}{j!} z^j + \sum_{j=p+1}^s \alpha_j z^j. \end{array}$$

In the PDE case, we can replace $\exp(\Delta t \lambda)$ with the exact dispersion relation for each Fourier mode.

Stability Optimization: a toy example

As an example, consider the advection equation

$$u_t + u_x = 0$$

discretized in space by first-order upwind differencing with unit spatial mesh size

$$U_i'(t) = -(U_i(t) - U_{i-1}(t))$$

with periodic boundary condition $U_0(t) = U_N(t)$.

Stability Optimization: a toy example

What is the relative efficiency?

 $\frac{\text{Stable step size}}{\text{Cost per step}}$

RK(4,4):
$$\frac{1.4}{4} \approx 0.35$$

RK(10,4): $\frac{6}{10} = 0.6$

By allowing even more stages, can asymptotically approach the efficiency of Euler's method.

Stability Optimization: a more interesting example

Second order discontinuous Galerkin discretization of advection:

Stability Optimization: one more example

Stability Optimization: one more example

s = 20

Stability Optimization: one more example

s = 20

High order Runge-Kutta methods

2 Linear properties of Runge-Kutta methods

3 Nonlinear properties of Runge-Kutta methods

Putting it all together: some optimal methods and applications

Besides the conditions on the stability polynomial coefficients, high order Runge-Kutta methods must satisfy additional nonlinear order conditions.

•
$$p = 1$$
: $\sum_{i} b_{i} = 1$
• $p = 2$: $\sum_{i,j} b_{i}a_{ij} = 1/2$
• $p = 3$: $\sum_{i,j,k} b_{i}a_{ij}a_{jk} = 1/6$
 $\sum_{i,j,k} b_{i}a_{ij}a_{ik} = 1/3$

Number of conditions grows factorially (719 conditions for order 10).

Classical stability theory and its extensions focus on

- weak bounds: $||u^n|| \leq C(t)$
- linear problems
- inner product norms
- For hyperbolic PDEs, we are often interested in
 - strict bounds $||u^n|| \leq C$
 - nonlinear problems
 - L_1, L_∞ , TV, or positivity

We refer to bounds of the latter types as strong stability properties. For example:

 $\|u^n\|_{\mathsf{TV}} \le \|u^{n-1}\|_{\mathsf{TV}}$

Designing fully-discrete schemes with strong stability properties is notoriously difficult!

Designing fully-discrete schemes with strong stability properties is notoriously difficult! Instead, one often takes a method-of-lines approach and assumes **explicit Euler** time integration.

Designing fully-discrete schemes with strong stability properties is notoriously difficult!

Instead, one often takes a method-of-lines approach and assumes **explicit Euler** time integration.

But in practice, we need to use higher order methods, for reasons of both accuracy and linear stability.

Designing fully-discrete schemes with strong stability properties is notoriously difficult!

Instead, one often takes a method-of-lines approach and assumes **explicit Euler** time integration.

But in practice, we need to use higher order methods, for reasons of both accuracy and linear stability.

Strong stability preserving methods provide higher order accuracy while maintaining any convex functional bound satisfied by Euler timestepping.

The Forward Euler condition

Recall our ODE system (typically from a PDE)

 $\mathbf{u}_t = F(\mathbf{u}),$

where the spatial discretization $F(\mathbf{u})$ is carefully chosen¹ so that the solution from the forward Euler method

 $\mathbf{u}^{n+1} = \mathbf{u}^n + \Delta t F(\mathbf{u}^n),$

satisfies the monotonicity requirement

 $||\mathbf{u}^{n+1}|| \le ||\mathbf{u}^n||,$

in some norm, semi-norm or convex functional $||\cdot||,$ for a suitably restricted timestep

$$\Delta t \leq \Delta t_{\mathsf{FE}}.$$

¹e.g. TVD, TVB

D. Ketcheson (KAUST)

Consider the two-stage method:

$$\mathbf{y}^{1} = \mathbf{u}^{n} + \Delta t F(\mathbf{u}^{n})$$
$$\mathbf{u}^{n+1} = \mathbf{u}^{n} + \frac{1}{2} \Delta t \left(F(\mathbf{u}^{n}) + F(\mathbf{y}^{1}) \right)$$

Is $||\mathbf{u}^{n+1}|| \le ||\mathbf{u}^{n}||$?

Consider the two-stage method:

$$\mathbf{y}^1 = \mathbf{u}^n + \Delta t F(\mathbf{u}^n)$$

$$\mathbf{u}^{n+1} = \frac{1}{2} \mathbf{u}^n + \frac{1}{2} \left(\mathbf{y}^1 + \Delta t F(\mathbf{y}^1) \right).$$

Take $\Delta t \leq \Delta t_{\mathsf{FE}}$. Then $||\mathbf{y}^1|| \leq ||\mathbf{u}^n||$, so $||\mathbf{u}^{n+1}|| \leq \frac{1}{2}||\mathbf{u}^n|| + \frac{1}{2}||\mathbf{y}^1 + \Delta tF(\mathbf{y}^1)|| \leq ||\mathbf{u}^n||.$ $||\mathbf{u}^{n+1}|| \leq ||\mathbf{u}^n||$ In general, an SSP method preserves strong stability properties satisfied by Euler's method, under a modified step size restriction:

 $\Delta t \leq C \Delta t_{\mathsf{FE}}.$

A fair metric for comparison is the effective SSP coefficient:

$$C_{\rm eff} = rac{\mathcal{C}}{\# \text{ of stages}}$$

By designing high order methods with many stages, we can achieve $\mathcal{C}_{\text{eff}} \to 1.$

Example: A highly oscillatory flow field

$$u_t + (\cos^2(20x + 45t)u)_x = 0$$
 $u(0, t) = 0$

Method	C _{eff}	Monotone effective timestep
NSSP(3,2)	0	0.037
SSP(50,2)	0.980	0.980
NSSP(3,3)	0	0.004
NSSP(5,3)	0	0.017
SSP(64,3)	0.875	0.875
RK(4,4)	0	0.287
SSP(5,4)	0.302	0.416
SSP(10,4)	0.600	0.602

- Straightforward implementation of an *s*-stage RK method requires *s* + 1 memory locations per unknown
- Special low-storage methods are designed so that each stage only depends on one or two most recent previous stages
- Thus older stages can be discarded as the new ones are computed
- It is often desirable to
 - Keep the previous solution around to be able to restart a step
 - Compute an error estimate
- This requires a minimum of three storage locations per unknown

Low storage methods

3S Algorithm

$$\begin{split} & S_3 := u^n \\ & (y_1) \quad S_1 := u^n \\ & \text{for } i = 2 : m + 1 \text{ do} \\ & S_2 := S_2 + \delta_{i-1} S_1 \\ & (y_i) \quad S_1 := \gamma_{i1} S_1 + \gamma_{i2} S_2 + \gamma_{i3} S_3 + \beta_{i,i-1} \Delta t F(S_1) \\ & \text{end} \\ & (\hat{u}^{n+1}) \quad S_2 := \frac{1}{\sum_{j=1}^{m+2} \delta_j} \left(S_2 + \delta_{m+1} S_1 + \delta_{m+2} S_3 \right) \\ & u^{n+1} = S_1 \end{split}$$

High order Runge-Kutta methods

2 Linear properties of Runge-Kutta methods

Outting it all together: some optimal methods and applications

 Optimize the linear stability or accuracy of the scheme by choosing the stability polynomial coefficients α_i

- Optimize the linear stability or accuracy of the scheme by choosing the stability polynomial coefficients α_j
- Optimize the nonlinear stability/accuracy and storage requirements by choosing the Butcher coefficients a_{ij}, b_j.

- Optimize the linear stability or accuracy of the scheme by choosing the stability polynomial coefficients α_j
- Optimize the nonlinear stability/accuracy and storage requirements by choosing the Butcher coefficients a_{ij}, b_j.

- Optimize the linear stability or accuracy of the scheme by choosing the stability polynomial coefficients α_j
- Optimize the nonlinear stability/accuracy and storage requirements by choosing the Butcher coefficients a_{ij}, b_j.

Each of these steps is a complex numerical problem in itself, involving nonconvex optimization in dozens to hundreds of variables, with nonlinear equality and inequality constraints.

Optimizing for the SD spectrum

- On regular grids, SD leads to a block-Toeplitz operator
- We perform a von Neumann-like analysis using a "generating pattern"

$$\begin{aligned} \frac{d\mathbf{W}_{i,j}}{dt} + \frac{a}{\Delta g} \left(\mathbf{T}^{0,0} \, \mathbf{W}_{i,j} + \mathbf{T}^{-1,0} \, \mathbf{W}_{i-1,j} + \mathbf{T}^{0,-1} \, \mathbf{W}_{i,j-1} \right. \\ \left. + \mathbf{T}^{+1,0} \, \mathbf{W}_{i+1,j} + \mathbf{T}^{0,+1} \, \mathbf{W}_{i,j+1} \right) &= 0 \end{aligned}$$

Optimizing for the SD spectrum

- Blue: eigenvalues; Red: RK stability boundary
- The convex hull of the generated spectrum is used as a proxy to accelerate the optimization process

Optimizing for the SD spectrum

- Primarily optimized for stable step size
- Secondary optimization for nonlinear accuracy and low-storage (3 memory locations per unknown)

Application: flow past a wedge

fully unstructured mesh

Application: flow past a wedge

• 62% speedup using optimized method

- Numerical optimization allows for flexible, targeted design of time integrators
- Stability optimization based on spectra from a model (linear) problem on a uniform grid seems to work well even for nonlinear problems on fully unstructured grids
- Significant speedup can be achieved in practice (greater for higher order methods)