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Solution of hyperbolic PDEs

The fundamental algorithmic barrier is the CFL condition:

∆t ≤ a∆x

Implicit methods don’t usually help (due to reduced accuracy)

Strong scaling limits the effectiveness of spatial parallelism alone

Strategy: keep ∆x as large as possible by using high order methods

But: high order methods cost more and require more memory

Can we develop high order methods that are as efficient as lower
order methods?
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Time Integration

Using a better time integrator is usually simple but can be highly
beneficial.

Using a different time integrator can:

Reduce the number of RHS evaluations required

Alleviate timestep resrictions due to

Linear stability
Nonlinear stability

Improve accuracy (truncation error, dispersion, dissipation)

Reduce storage requirements
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Runge-Kutta Methods

To solve the initial value problem:

u′(t) = F (u(t)), u(0) = u0

a Runge-Kutta method computes approximations un ≈ u(n∆t):

y i = un + ∆t
i−1∑
j=1

aijF (y j)

un+1 = un + ∆t
s−1∑
j=1

bjF (y j)

The accuracy and stability of the method depend on the coefficient matrix
A and vector b.
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Runge-Kutta Methods: a philosophical aside

An RK method builds up information about the solution derivatives
through the computation of intermediate stages

At the end of a step all of this information is thrown away!

Use more stages =⇒ keep information around longer
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The Stability Function

For the linear equation
u′ = λu,

a Runge-Kutta method yields a solution

un+1 = φ(λ∆t)un,

where φ is called the stability function of the method:

φ(z) =
det(I− z(A− ebT)

det(I− zA)

Example: Euler’s Method

un+1 = un + ∆tF (u); φ(z) = 1 + z .

For explicit methods of order p:

φ(z) =

p∑
j=0

1

j!
z j +

s∑
j=p+1

αjz
j .
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Absolute Stability

For the linear equation

u′(t) = Lu

we say the solution is absolutely stable if |φ(λ∆t)| ≤ 1 for all λ ∈ σ(L).

Example: Euler’s Method

un+1 = un + ∆tF (u); φ(z) = 1 + z .

−1
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Stability optimization

This leads naturally to the following problem.

Stability optimization

Given L, p, s,

maximize ∆t

subject to |φ(∆tλ)| − 1 ≤ 0, λ ∈ σ(L),

where φ(z) =

p∑
j=0

1

j!
z j +

s∑
j=p+1

αjz
j .

Here the decision variables are ∆t and the coefficients αj , j = p + 1, . . . , s.
This problem is quite difficult; we approximate its solution by solving a
sequence of convex problems (DK & A. Ahmadia, arXiv preprint).
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Accuracy optimization

We could instead optimize accuracy over some region in C:

Accuracy optimization

Given L, p, s,

maximize ∆t

subject to |φ(∆tλ)− exp(∆tλ| ≤ ε, λ ∈ σ(L),

where φ(z) =

p∑
j=0

1

j!
z j +

s∑
j=p+1

αjz
j .

In the PDE case, we can replace exp(∆tλ) with the exact dispersion
relation for each Fourier mode.
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Stability Optimization: a toy example

As an example, consider the advection equation

ut + ux = 0

discretized in space by first-order upwind differencing with unit spatial
mesh size

U ′i (t) = −(Ui (t)− Ui−1(t))

with periodic boundary condition U0(t) = UN(t).
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Stability Optimization: a toy example
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(a) RK(4,4)
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(b) Optimized 10-stage method
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Stability Optimization: a toy example

What is the relative efficiency?

Stable step size

Cost per step

RK(4,4):
1.4

4
≈ 0.35

RK(10,4):
6

10
= 0.6

By allowing even more stages, can asymptotically approach the efficiency
of Euler’s method.
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Stability Optimization: a more interesting example

Second order discontinuous Galerkin discretization of advection:
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Stability Optimization: one more example
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Stability Optimization: one more example

s = 20
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Nonlinear accuracy

Besides the conditions on the stability polynomial coefficients, high order
Runge-Kutta methods must satisfy additional nonlinear order conditions.

p = 1:
∑

i bi = 1

p = 2:
∑

i ,j biaij = 1/2

p = 3:
∑

i ,j ,k biaijajk = 1/6∑
i ,j ,k biaijaik = 1/3

Number of conditions grows factorially (719 conditions for order 10).
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Beyond linear stability

Classical stability theory and its extensions focus on

weak bounds: ‖un‖ ≤ C (t)

linear problems

inner product norms

For hyperbolic PDEs, we are often interested in

strict bounds ‖un‖ ≤ C

nonlinear problems

L1, L∞, TV , or positivity

We refer to bounds of the latter types as strong stability properties.
For example:

‖un‖TV ≤ ‖un−1‖TV

D. Ketcheson (KAUST) 21 / 36



Strong stability preservation

Designing fully-discrete schemes with strong stability properties is
notoriously difficult!

Instead, one often takes a method-of-lines approach and assumes explicit
Euler time integration.

But in practice, we need to use higher order methods, for reasons of both
accuracy and linear stability.
Strong stability preserving methods provide higher order accuracy while
maintaining any convex functional bound satisfied by Euler timestepping.
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The Forward Euler condition

Recall our ODE system (typically from a PDE)

ut = F (u),

where the spatial discretization F (u) is carefully chosen1 so that the
solution from the forward Euler method

un+1 = un + ∆tF (un),

satisfies the monotonicity requirement

||un+1|| ≤ ||un||,

in some norm, semi-norm or convex functional || · ||, for a suitably
restricted timestep

∆t ≤ ∆tFE.

1e.g. TVD, TVB
D. Ketcheson (KAUST) 23 / 36



Runge–Kutta methods as a convex combination of Euler

Consider the two-stage method:

y1 = un + ∆tF (un)

un+1 = un +
1

2
∆t
(
F (un) + F (y1)

)
Is ||un+1|| ≤ ||un||?
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Runge–Kutta methods as a convex combination of Euler

Consider the two-stage method:

y1 = un + ∆tF (un)

un+1 =
1

2
un +

1

2

(
y1 + ∆tF (y1)

)
.

Take ∆t ≤ ∆tFE. Then ||y1|| ≤ ||un||, so

||un+1|| ≤ 1

2
||un||+ 1

2
||y1 + ∆tF (y1)|| ≤ ||un||.

||un+1|| ≤ ||un||

D. Ketcheson (KAUST) 24 / 36



Optimized SSP methods

In general, an SSP method preserves strong stability properties satisfied by
Euler’s method, under a modified step size restriction:

∆t ≤ C∆tFE.

A fair metric for comparison is the effective SSP coefficient:

Ceff =
C

# of stages

By designing high order methods with many stages, we can achieve
Ceff → 1.
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Example: A highly oscillatory flow field

ut +
(
cos2(20x + 45t)u

)
x

= 0 u(0, t) = 0

Method ceff Monotone effective timestep

NSSP(3,2) 0 0.037
SSP(50,2) 0.980 0.980

NSSP(3,3) 0 0.004
NSSP(5,3) 0 0.017
SSP(64,3) 0.875 0.875

RK(4,4) 0 0.287
SSP(5,4) 0.302 0.416
SSP(10,4) 0.600 0.602
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Low storage methods

Straightforward implementation of an s-stage RK method requires
s + 1 memory locations per unknown

Special low-storage methods are designed so that each stage only
depends on one or two most recent previous stages

Thus older stages can be discarded as the new ones are computed

It is often desirable to

Keep the previous solution around to be able to restart a step
Compute an error estimate

This requires a minimum of three storage locations per unknown

D. Ketcheson (KAUST) 27 / 36



Low storage methods

3S Algorithm

S3 := un

(y1) S1 := un

for i = 2 : m + 1 do

S2 := S2 + δi−1S1

(yi ) S1 := γi1S1 + γi2S2 + γi3S3 + βi,i−1∆tF(S1)

end

(ûn+1) S2 :=
1∑m+2

j=1 δj
(S2 + δm+1S1 + δm+2S3)

un+1 = S1

D. Ketcheson (KAUST) 28 / 36
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Two-step optimization process

Our optimization approach proceeds in two steps:

1 Optimize the linear stability or accuracy of the scheme by choosing
the stability polynomial coefficients αj

2 Optimize the nonlinear stability/accuracy and storage requirements by
choosing the Butcher coefficients aij , bj .

Each of these steps is a complex numerical problem in itself, involving
nonconvex optimization in dozens to hundreds of variables, with nonlinear
equality and inequality constraints.
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Optimizing for the SD spectrum

On regular grids, SD leads to a block-Toeplitz operator

We perform a von Neumann-like analysis using a ”generating pattern”

i + 1, j − 1

i + 1, ji − 1, j

!g2

!g1

i, j + 1 i + 1, j + 1

i, j

i − 1, j + 1

i − 1, j − 1 i, j − 1

dWi ,j

dt
+

a

∆g

(
T0,0 Wi ,j + T−1,0 Wi−1,j + T0,−1 Wi ,j−1

+T+1,0 Wi+1,j + T0,+1 Wi ,j+1

)
= 0
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Optimizing for the SD spectrum

Blue: eigenvalues; Red: RK stability boundary

The convex hull of the generated spectrum is used as a proxy to
accelerate the optimization process
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Optimizing for the SD spectrum

Primarily optimized for stable step size

Secondary optimization for nonlinear accuracy and low-storage (3
memory locations per unknown)

D. Ketcheson (KAUST) 33 / 36



Application: flow past a wedge

fully unstructured mesh
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Application: flow past a wedge

Density at t = 100

62% speedup using optimized method
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Conclusions

Numerical optimization allows for flexible, targeted design of time
integrators

Stability optimization based on spectra from a model (linear) problem
on a uniform grid seems to work well even for nonlinear problems on
fully unstructured grids

Significant speedup can be achieved in practice (greater for higher
order methods)
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