
Generating programs works better than
transforming them, if you get the

abstraction right
Paul H J Kelly

Group Leader, Software Performance Optimisation
Co-Director, Centre for Computational Methods in Science and Engineering

Department of Computing
Imperial College London

Joint work with :

David Ham, Gerard Gorman, Florian Rathgeber (Imperial ESE/Grantham Inst for Climate Change Res)
Mike Giles, Gihan Mudalige (Mathematical Inst, Oxford)

Adam Betts, Carlo Bertolli, Nicolas Loriant, Graham Markall, George Rokos (Software Perf Opt Group, Imperial)
Spencer Sherwin (Aeronautics, Imperial), Chris Cantwell (Cardio-mathematics group, Mathematics, Imperial) 1

Block-sparse
tensor
contraction

Moving meshes

Mixed meshes

What we are
doing….

!   Roadmap: applications drive DSLs, delivering performance portability

Finite-volume
CFD

OP2.1:
extended with
dynamic
meshes

OP2: parallel
loops over
unstructured
meshes

Mesh
adaptation

extended with
sparse matrices

with fully-
abstract graphs

Finite-element
assembly

Particle
problems –
molecular
dynamics

Rolls-Royce
HYDRA
turbomachinery
CFD

Fluidity and the
Imperial
College Ocean
Model (ICOM)

FENicS finite-
element PDE
generator
(UFL)

LAMMPS –
granular
flow

OpenMP CUDA/
OpenCL MPI SSE/AVX

Streaming
dataflow
using
Maxeler

?

P-adaptivity

with piecewise
structured
meshes

3D scene
understanding

(DTAM)

Ab initio
quantum
chemistry
(DFT)

Pair model
generator

DFT
integration
generator

Access-execute descriptors as general framework for capturing complex dependence

…

The message

!  Slogans
!  Generative, instead

of transformative
optimisation

!  Get the abstraction
right, to isolate
numerical methods
from mapping to
hardware

!  Build vertically,
learn horizontally

!  The value of
generative and DSL
techniques

!  Plenty of room at the
top

!  The biggest
opportunities are at
the highest level

3

The Moore School
Lectures

!   The first ever computer
architecture conference

!   July 8th to August 31st
1946, at the Moore
School of Electrical
Engineering, University
of Pennsylvania

!   A defining moment in
the history of computing

…

S
ee

 a
ls

o
ht

tp
://

w
w

w
.d

ig
ita

l6
0.

or
g/

bi
rth

/th
em

oo
re

sc
ho

ol
/le

ct
ur

es
.h

tm
l#

l4
5

Example:
 for (i=0; i<N; ++i) {
 points[i]->x += 1;
 }

x
y
z

x
y
z

x
y
z

x
y
z

x
y
z

x
y
z

x
y
z

x
y
z

x
y
z

!  No problem: each iteration is independent

!  Can the iterations
of this loop be
executed in
parallel?

Easy parallelism

Example:
 for (i=0; i<N; ++i) {
 points[i]->x += 1;
 }

x
y
z

x
y
z

x
y
z

x
y
z

x
y
z

x
y
z

x
y
z

x
y
z

!  Oh no: not all the iterations are independent!
!  You want to re-use piece of code in different contexts
!  Whether it’s parallel depends on context!

!  Can the iterations
of this loop be
executed in
parallel?

Easy parallelism

!  Shared memory makes parallel
programming much easier:

 for(i=0; I<N; ++i)
par_for(j=0; j<M; ++j)
 A[i,j] = (A[i-1,j] + A[i,j])*0.5;

 par_for(i=0; I<N; ++i)
for(j=0; j<M; ++j)
 A[i,j] = (A[i,j-1] + A[i,j])*0.5;

!   First loop operates on rows in parallel
!   Second loop operates on columns in

parallel
!   With distributed memory we would have

to program message passing to
broadcast the columns in between

!   With shared memory… no problem!

i

i
j

j

Loop 1:

Loop 2:

P1

P1

Sarah Talbot and Paul Kelly, "Stable Performance for cc-NUMA using
First Touch Page Placement and Reactive Proxies". HPCS'98

Another loss of abstraction…

Self-optimising linear algebra library

x:=αp+x

A r x

q:=A.p Θ:=r.r

χ:=q.p

α:= θ/χ

A: blocked row-major x: blocked row-wise r: blocked row-wise

transpose

p:=r

!  Each library function
comes with metadata
describing data layout
constraints

!  Solve for distribution
of each variable that
minimises
redistribution cost

(Olav Beckmann and Paul H J Kelly, "A Linear Algebra Formulation for
Optimising Replication in Data Parallel Programs". LCPC'99)

• Carbon • Evolve

• Stats

• Zoo

• Phyto

• Physics
• Move

• Nutrient

• Energy

• Total Biomass
computed here

• Used here

• Cell Nitrogen
computed here

• Used here

• And so on…

• …

• Nz
• Az
• Iz
• CO
2z

• …

• Ocean
• surface

! Application:
ocean plankton
ecology model

! 27 reduction operations
in total

! 3 communications
actually required!

! 60% speedup for 32-
processor AP3000

• A.J. Field, P.H.J. Kelly and T.L. Hansen, "Optimizing Shared Reduction Variables in MPI Programs". In Euro-Par 2002

Automatic fusion of all-reduces

Easy parallelism – tricky engineering

!  Parallelism breaks
abstractions:
!   Whether code should run in

parallel depends on context
!   How data and computation

should be distributed across
the machine depends on
context

!   “Best-effort”, opportunistic
parallelisation is almost
useless:
!   Robust software must

robustly, predictably, exploit
large-scale parallelism

How can we build
robustly-efficient
multicore
software

While maintaining
the abstractions
that keep code
clean, reusable
and of long-term
value?

It’s a software engineering problem

Active libraries and DSLs
!   Domain-specific languages...
!   Embedded DSLs
!   Active libraries

!   Libraries that come with a
mechanism to deliver library-
specific optimisations

!   Domain-specific “active” library
encapsulates specialist performance
expertise

!   Each new platform requires new
performance tuning effort

!   So domain-specialists will be doing the
performance tuning

!   Our challenge is to support them

Applications

Exotic hardware

Active library

GPU Multicore FPGA Quantum?

Visual effects
Finite element

Linear algebra
Game physics

Finite difference

!   Classical compilers have two halves

Syntax
Points-to

Class-hierarchy
Dependence

Shape
.....

Register allocation
Instruction selection/scheduling

Storage layout
Tiling

Parallelisation
Program Dependence

!   The right domain-specific language or active library can give
us a free ride

Syntax
Points-to

Class-hierarchy
Dependence

Shape
.....

Register allocation
Instruction selection/scheduling

Storage layout
Tiling

Parallelisation
Program Dependence

!   It turns out that analysis is not always the interesting part....

Syntax
Points-to

Class-hierarchy
Dependence

Shape
.....

Register allocation
Instruction selection/scheduling

Storage layout
Tiling

Parallelisation
Program Dependence

ht
tp

://
w

w
w

.n
ik

ki
em

cd
ad

e.
co

m
/s

ub
Fi

le
s/

2D
E

xa
m

pl
es

.h
tm

l
ht

tp
://

w
w

w
.g

in
z.

co
m

/n
ew

_z
ea

la
nd

/s
ki

_n
ew

_z
ea

la
nd

_w
an

ak
a_

ca
dr

on
a

C,C++, C#, Java, Fortran

Code motion
optimisations
Vectorisation and
parallelisation of affine
loops over arrays

Capture dependence
and communication in
programs over richer
data structures

Specify application
requirements, leaving
implementation to select
radically-different solution
approaches

Encapsulating and delivering domain expertise

!  Domain-specific languages & active
libraries
!  Raise the level of abstraction
!  Capture a domain of variability
!  Encapsulate reuse of a body of

code generation expertise/
techniques

!  Enable us to capture design space
!  To match implementation choice to

application context:
!  Target hardware
!  Problem instance

!  This talk illustrates these ideas with
some of our recent/current projects

Target hardware context

Application-domain context

Unifying
representation

Having your cake and eating it

!   If we get this right:
!   Higher performance than you can

reasonably achieve by hand
!   the DSL delivers reuse of expert

techniques
!   Implements extremely aggressive

optimisations
!   Performance portability

!   Isolate long-term value embodied
in higher levels of the software
from the optimisations needed for
each platform

!   Raised level of abstraction
!   Promoting new levels of

sophistication
!   Enabling flexibility

!   Domain-level correctness

C/C++/Fortran

CUDA
VHDL

DSL
Reusable
generator

Performance

E
as

e
of

 u
se

Having your cake and eating it

!   If we get this right:
!   Higher performance than you can

reasonably achieve by hand
!   the DSL delivers reuse of expert

techniques
!   Implements extremely aggressive

optimisations
!   Performance portability

!   Isolate long-term value embodied
in higher levels of the software
from the optimisations needed for
each platform

!   Raised level of abstraction
!   Promoting new levels of

sophistication
!   Enabling flexibility

!   Domain-level correctness

C/C++/Fortran

MPI,
 OpenMP
 CUDA
 VHDL

Where
compiler
research

should be

Performance

E
as

e
of

 u
se

Bad tools!

Powerful
magic

Indexed functor
•  Functor represents function over an image
•  Kernel accesses image via indexers
•  Indexers carry metadata that characterises kernel’s data access pattern

!  One-dimensional discrete wavelet transform, as indexed functor
!  Compilable with standard C++ compiler
!  Operates in either the horizontal or vertical axis

!   Input indexer operates on RGB components separately
!   Input indexer accesses ±radius elements in one (the axis) dimension

!  Domain-specific active
library example

Image degrain example

!  Recursive wavelet-based degraining visual effect in C++
!  Visual primitives are chained together via image temporaries to form a DAG
!  DAG construction is captured through delayed evaluation.

• Collaboration with The Foundry Ltd, www.thefoundry.co.uk, visual effects for film post-production

Performance – Multicore +SSE vs NVidia GPUs

This research prototype is part of the foundation for The Foundry’s forthcoming BLINK developer tool

AEcute: Kernels, iteration spaces, and access descriptors

• AEcute: Kernels, iteration spaces, and access descriptors

What does this have to do?

• AEcute: Kernels, iteration spaces, and access descriptors

!   Automate synthesis of data movement code
!   Automatically partition and parallelise
!   Automatically select storage layouts and schedules to

maximise spatial locality and alignment
!   Automatically fuse loops and contract intermediate arrays

• AEcute: Kernels, iteration spaces, and access descriptors

!   Automate synthesis of data movement code
!   Automatically partition and parallelise
!   Automatically select storage layouts and schedules to

maximise spatial locality and alignment
!   Automatically fuse loops and contract intermediate arrays

!   Explicitly characterise what data will be accessed
!   At each point in the kernel’s iteration space
!   As a function of its position

• Idea: decoupling

Access operands

Execute

Write back

(the essence of streaming)

(generalised)

• Idea: decoupling

The AEcute programming model

Access operands

Execute

Write back

Iteration space

Read accesses

Write accesses

Read access descriptor

Write access descriptor

!   Explicitly characterise what data will be accessed
!   At each point in the kernel’s iteration space
!   As a function of its position

AEcute
!   Decoupled Access/Execute descriptors

AEcute and Indexed functors
•  The “indexed functors” from our visual effects framework are an

instance of the AEcute idea

Kernel Indexers Access descriptors

OP2 – a decoupled access-execute active library
for unstructured mesh computations

// declare sets, maps, and datasets
op_set nodes = op_decl_set(nnodes);
op_set edges = op_decl_set(nedges);

op_map pedge1 = op_decl_map (edges,
nodes, 1, mapData1);

op_map pedge2 = op_decl_map (edges,
nodes, 1, mapData2);

op_dat p_A = op_decl_dat (edges, 1, A);
op_dat p_r = op_decl_dat (nodes, 1, r);
op_dat p_u = op_decl_dat (nodes, 1, u);
op_dat p_du = op_decl_dat (nodes, 1, du);

// global variables and constants declarations
float alpha[2] = { 1.0f, 1.0f };
op_decl_const (2, alpha);

float u_sum, u_max, beta = 1.0f;

for (int iter = 0; iter < NITER; iter++)
{ op_par_loop (res, edges,

 op_arg_dat (p_A, 0, NULL, OP_READ),
 op_arg_dat (p_u, 0, &pedge2, OP_READ),
 op_arg_dat (p_du, 0, &pedge1, OP_INC),
 op_arg_gbl (&beta, OP_READ)
);
 u_sum = 0.0f; u_max = 0.0f;
 op_par_loop (update, nodes,
 op_arg_dat (p_r, 0, NULL, OP_READ),
 op_arg_dat (p_du, 0, NULL, OP_RW),
 op_arg_dat (p_u, 0, NULL, OP_INC),
 op_arg_gbl (&u_sum, OP_INC),
 op_arg_gbl (&u_max, OP_MAX)
);

} Example – Jacobi solver

OP2- Data model

OP2’s key data structure is a set
A set may contain pointers that map into another set

Eg each edge points to two vertices

A
Pedge1
Pedge2

r
u
Du

A
Pedge1
Pedge2

A
Pedge1
Pedge2

A
Pedge1
Pedge2

A
Pedge1
Pedge2

r
u
Du

r
u
Du

r
u
Du

r
u
Du

r
u
Du

// declare sets, maps, and datasets
op_set nodes = op_decl_set(nnodes);
op_set edges = op_decl_set(nedges);

op_map pedge1 = op_decl_map (edges,
nodes, 1, mapData1);

op_map pedge2 = op_decl_map (edges,
nodes, 1, mapData2);

op_dat p_A = op_decl_dat (edges, 1, A);
op_dat p_r = op_decl_dat (nodes, 1, r);
op_dat p_u = op_decl_dat (nodes, 1, u);
op_dat p_du = op_decl_dat (nodes, 1, du);

// global variables and constants declarations
float alpha[2] = { 1.0f, 1.0f };
op_decl_const (2, alpha);

OP2 – a decoupled access-execute active library
for unstructured mesh computations

Example – Jacobi solver

!   Each parallel loop precisely
characterises the data that will be
accessed by each iteration

!   This allows staging into
scratchpad memory

!   And gives us precise dependence
information

!   In this example, the “res” kernel
visits each edge
!   reads edge data, A
!   Reads beta (a global),
!   Reads u belonging to the vertex

pointed to by “edge2”
!   Increments du belonging to the

vertex pointed to by “edge1”

float u_sum, u_max, beta = 1.0f;

for (int iter = 0; iter < NITER; iter++)
{ op_par_loop_4 (res, edges,

 op_arg_dat (p_A, 0, NULL, OP_READ),
 op_arg_dat (p_u, 0, &pedge2, OP_READ),
 op_arg_dat (p_du, 0, &pedge1, OP_INC),
 op_arg_gbl (&beta, OP_READ)
);
 u_sum = 0.0f; u_max = 0.0f;
 op_par_loop_5 (update, nodes,
 op_arg_dat (p_r, 0, NULL, OP_READ),
 op_arg_dat (p_du, 0, NULL, OP_RW),
 op_arg_dat (p_u, 0, NULL, OP_INC),
 op_arg_gbl (&u_sum, OP_INC),
 op_arg_gbl (&u_max, OP_MAX)
);

}

OP2 – parallel loops

Example – Jacobi solver

!   Each parallel loop precisely
characterises the data that will be
accessed by each iteration

!   This allows staging into
scratchpad memory

!   And gives us precise dependence
information

!   In this example, the “res” kernel
visits each edge
!   reads edge data, A
!   Reads beta (a global),
!   Reads u belonging to the vertex

pointed to by “edge2”
!   Increments du belonging to the

vertex pointed to by “edge1”

float u_sum, u_max, beta = 1.0f;

for (int iter = 0; iter < NITER; iter++)
{ op_par_loop_4 (res, edges,

 op_arg_dat (p_A, 0, NULL, OP_READ),
 op_arg_dat (p_u, 0, &pedge2, OP_READ),
 op_arg_dat (p_du, 0, &pedge1, OP_INC),
 op_arg_gbl (&beta, OP_READ)
);
 u_sum = 0.0f; u_max = 0.0f;
 op_par_loop_5 (update, nodes,
 op_arg_dat (p_r, 0, NULL, OP_READ),
 op_arg_dat (p_du, 0, NULL, OP_RW),
 op_arg_dat (p_u, 0, NULL, OP_INC),
 op_arg_gbl (&u_sum, OP_INC),
 op_arg_gbl (&u_max, OP_MAX)
);

}

inline void res(const float A[1], const float u[1],
 float du[1], const float beta[1])

{
 du[0] += beta[0]*A[0]*u[0];
}

inline void update(const float r[1], float du[1],
 float u[1], float u_sum[1], float u_max[1])

{
 u[0] += du[0] + alpha * r[0];
 du[0] = 0.0f;
 u_sum[0] += u[0]*u[0];
 u_max[0] = MAX(u_max[0],u[0]);
}

!   Two key
optimisations:

!   Partitioning
!   Colouring

Edges

Vertices

Cross-partition
edges

Vertices

Cross-partition
edges

Edges

!   Two key
optimisations:

!   Partitioning
!   Colouring

!   Elements of
the edge set
are coloured
to avoid
races due to
concurrent
updates to
shared
nodes

!   Two key
optimisations:

!   Partitioning
!   Colouring

!   At two levels

Edges

Vertices

Cross-partition
edges

OP2 - performance

!   Example: non-linear 2D inviscid unstructured airfoil
code, double precision (compute-light, data-heavy)

!   Two backends: OpenMP, CUDA (OpenCL coming)
!   For tough, unstructured problems like this GPUs can

win, but you have to work at it
!   X86 also benefits from tiling; we are looking at how to

enhance SSE/AVX exploitation

Combining MPI, OpenMP and CUDA

Titer = Tss + 2(Tac + Trc + Tbrc + Tu) (1)

Tss = wg,ss × ncells (2)

Tac = wg,ac × ncells (3)

Trc = max(wg,rc × ncore,edges, Tcomm,rc) +

wg,rc × (nieh,edges + neeh,edges) (4)

Tbrc = wg,brc × (nbedges + nieh,bedges) (5)

Tu = wg,u × ncells + Treduce (6)

Tcomm,rc = (nieh,cells + ninh,cells)× 8B ×
(esizep q + esizep adt) + 2LNavg,cells +

Lon chip × CNavg,cells (7)

Figure 4: Performance model for CPU cluster

Table 5: Airfoil Model validations and projections

System Nodes Pred. Actual Err

(sec) (sec) (%)

5 (120 cores) 7.39 7.86 -6.08

10 (240 cores) 3.77 4.02 -6.30

HECToR 20 (480 cores) 1.92 2.09 -8.14

40 (960 cores) 0.99 1.12 -11.14

60 (1440 cores) 1.25 1.41 -11.29

80 (1920 cores) 1.14 1.28 -10.83

5(60 cores) 12.38 12.29 0.78

6(72 cores) 10.32 10.44 -1.20

CX1 10(120 cores) 6.22 6.07 2.51

40(480 cores) 1.61 - -

80(960 cores) 0.84 - -

120(1440 cores) 1.08 - -

2 × C2070 8.29 - -

Tesla 4 × C2070 4.30 - -

C2070 12 × C2070 1.87 - -

processor to another. Thus 1/B gives the bandwidth of the
network. L is the latency associated with communicating a
message with a neighbor. To account for the critical path
time during message passing, we use the off-node message
communication times. We double the latency term as there
are two data arrays being exchanged. The esize∗ gives the
size of an element (i.e. number of double precision values per
set element) for each data array. The 8 multiplier accounts
for the size of a double precision floating-point value on the
system. C is the number of cores that share a NIC (12 cores
share a NIC in HECToR [22] and CX1). We assume that
some serialization of MPI messages are caused at the NIC
during message passing [26, 25] and approximate it as the la-
tency for communicating a message within a node (Lon chip)
multiplied by the average number of MPI messages sent si-
multaneously. The values for B, L and Lon chip were found
by benchmarking the end-to-end message transfer time (using
the Intel MPI benchmarks suite [27]) between two nodes (and
two cores) for a range of message sizes. The time for a reduce
operation Treduce was approximately modeled as a tree gather
operation [25].
Table 5 details validations of the above performance model

on HECToR (up to 1920 cores) and CX1 (up to 120 cores).
The model accuracy exceeds 90% for most runs but is more
sensitive to the system communication performance at large
scale. However the model accurately predicts the number
of cores that gives the optimum runtime and the qualitative
trend in scaling on HECToR, allowing us to establish the lim-
its of scalability for Airfoil. Table 5 also notes projected run-
times using the model for CX1 up to 960 cores. Starting
at 1440 cores the model predicts that communication times
dominate the max term in (4) on both HECToR and CX1.
To extend the above homogeneous multi-core CPU cluster

model to that of a GPU cluster model requires us to con-
sider the additional costs involved during MPI operation over

0

10

20

30

40

50

60

0 50 100 150 200 250 300 350 400 450 500

E
x
e
c
u

t
i
o

n
t
i
m

e
(
S

e
c
o

n
d

s
)

Number of nodes

CX1 Pred.

HECToR Actu.

HECToR Pred.

C2070 cluster Pred.

Figure 5: Airfoil - 26M edge mesh (1000 iterations) :

HECToR - 24 core/node, CX1 - 12 core/node, C2070

cluster - 1 GPU/node

GPUs. Such techniques have been previously used for pre-
dicting GPU cluster performance with high accuracy [28]. For
this paper we develop the GPU cluster model for Airfoil as-
suming a cluster of NVIDIA C2070 GPUs that is intercon-
nected by an InfiniBand network with similar performance to
that of CX1. Computation times for each loop was bench-
marked on a single C2070 GPU for various mesh sizes. This
gives us approximate times for the GPU to execute a given
number of set elements belonging to its local partition. The
communication time for res_calc in (7) was augmented with
PCIe bandwidths and latencies (measured using the NVIDIA
CUDA SDK’s bandwidthTest benchmark, and a custom la-
tency benchmark) to copy halo data to and from the GPU.
Our measurements indicated a host to device PCIe bandwidth
and latency of about 3700 MB/sec and 9µS respectively. The
device to host bandwidth and latency was about 3130 MB/sec
and 11µS. Assuming that each C2070 has exclusive access to
a NIC we remove the serialization costs terms from (7). The
current model does not taken into consideration the possible
performance gains with NVIDIA’s new GPUDirect [24] tech-
nology. Projections from the GPU cluster model are noted in
the final three rows of Table 5.

It is clear from these results that the 1.5 million edge mesh
on the GPU cluster reaches its scalability limits with a few
C2070 GPUs compared to HEXToR and CX1. Thus we bench-
mark and project performance for solving a 26 million edge
mesh with Airfoil. Figure 5 projects the performance of Airfoil
solving this mesh on both CX1 and the hypothetical C2070
GPU cluster. Actual run times from HECToR are also pro-
vided as a reference.

The model predicts, for example, a cluster with 36 C2070
GPUs to give equivalent performance to that of over 1920
HECToR cores (80 nodes) or a Westmere/InfiniBand cluster
with 1440 cores (120 nodes). Thus, we see a C2070 cluster to
give the same performance that is equivalent to performance
given by traditional homogeneous clusters that are more than
three times its size. However this should be considered in the
context of the amount of available memory on a GPU to hold
and execute the required partition size. For example, the 26
million edge mesh could not be solved on a single C2070 GPU
due to lack of resources on the device where at least 12 C2070
GPUs are required for such a workload.

On HECToR and CX1 we see that the increase in redun-
dant computations due to ieh at large-scales degrades per-
formance. The runtime at 160 HECToR nodes and 320 CX1
nodes was particularly affected by a large ieh. However, in-
crease in redundant computation has almost a negligible af-
fect on the C2070 GPUs due to their SIMD operation over
elements. Thus the model predicts a much more smoother
performance curve on the GPU cluster. The C2070 cluster
scales up to 128 nodes after which the performance plateaus.

(Preliminary results under review)

!   non-linear 2D
inviscid airfoil
code

!   26M-edge
unstructured
mesh

!   1000
iterations

!   Analytical
model
validated on
up to 120
Westmere
X5650 cores
and 1920
HECToR
(Cray XE6)
cores

Unmodified C++ OP2 source
code exploits inter-node
parallelism using MPI, and
intra-node parallelism using
OpenMP and CUDA

What does a DSL give you?
!   Semantic properties deriving from the domain-level

!   example: SPIRAL's rewrite rules for decomposing linear transforms

!   Simplified reasoning deriving from operating at a higher
level of representation
!   example: SPIRAL but also DESOLA's treatment of fusion of loops over

sparse matrices

!   Delivering optimisations and implementation techniques
specifically known to be valuable for a class of
applications
!   example: OP2's partitioning, staging and colouring schemes for indirect

loops over unstructured meshes

!   Opening-up the design space, so that we can freely
navigate to the optimum implementation technique for
each application context and each hardware platform.

A:14 Russell and Kelly

element = FiniteElement(" Lagrange " , " triangle " , 2)
element_f = FiniteElement(" Lagrange " , " triangle " , 1)

v = TestFunction(element)
u = TrialFunction(element)

f = Coefficient(element_f)
g = Coefficient(element_f)
h = Coefficient(element_f)

a = f*g*h*dot(v, u)*dx

Fig. 4: A specification for a pre-multiplied mass matrix with element order q = 2, pre-
multiplied by by nf = 3 functions of order p = 1.

nf = 1 nf = 2 nf = 3 nf = 4

Q T E B/E Q T E B/E Q T E B/E Q T E B/E
p = 1, q = 1 218 27 28 0.96 260 80 70 1.14 350 267 121 2.20 679 751 215 3.15

p = 1, q = 2 820 76 89 0.85 1483 193 160 1.20 2092 651 284 2.29 3432 1949 501 3.89

p = 1, q = 3 4946 126 161 0.78 7915 490 410 1.19 8057 1559 922 1.69 11851 3123 1205 2.59

p = 1, q = 4 17316 435 485 0.89 24915 1111 1048 1.06 25331 2542 2024 1.25 34526 4159 2797 1.48

p = 2, q = 1 253 49 55 0.89 655 315 218 1.44 1690 1970 941 1.79 2896 10637 2421 1.19

p = 2, q = 2 1533 117 134 0.87 3424 998 584 1.70 5339 5899 2372 2.25 - - - -
p = 2, q = 3 7857 318 356 0.89 11779 1966 1431 1.37 16690 7860 4732 1.66 - - - -
p = 2, q = 4 24930 853 979 0.87 34435 4306 3603 1.19 - - - - - - - -
p = 3, q = 1 356 106 90 1.17 1767 1023 501 2.04 - - - - - - - -
p = 3, q = 2 2122 223 217 1.02 5443 2743 1473 1.86 - - - - - - - -
p = 3, q = 3 8113 756 838 0.90 16927 5684 4552 1.24 - - - - - - - -
p = 3, q = 4 25165 1661 2006 0.82 46034 9856 9746 1.01 - - - - - - - -

Table I: The number of floating point operations required to perform local assembly of
pre-multiplied mass matrices of varying complexity over a two-dimensional triangular
cell. Forms use an order q Lagrangian basis multiplied with nf functions of order p,
also discretised using a Lagrangian basis. The columns Q, T and E denote the num-
ber of floating point operations required by the quadrature, tensor contraction and
EXCAFÉ implementations, respectively. The column B/E denotes the improvement in
operation count of the EXCAFÉ generated implementation over the quadrature or ten-
sor contraction implementation with the lowest floating point operation count.

ically implemented our cell entity numbering and basis function construction so that
given the same input data, our generated code should produce the same output as the
FFC generated implementations.

For each tested form, we generated pseudo-random basis function coefficients be-
tween −1 and 1 and provided them as input to the FFC generated quadrature imple-
mentation and EXCAFÉ generated code. We used a fixed cell geometry to avoid aspect
ratio related issues. We verifed that the L2-norm between the matrix entries of the
two implementations remained less than 10−12.

TODO: possibly also validate over different cell geometries.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: 201Y.

!   #FLOPs for local assembly of pre-multiplied mass matrices of varying complexity
over a two-dimensional triangular cell

!   Forms use an order q Lagrangian basis multiplied with nf functions of order p, also
discretised using a Lagrangian basis.

!   Columns Q, T and E show #FLOPs for quadrature, tensor contraction and our
optimised ́ implementations, respectively

!   B/E denotes improvement over min(Q,T)

Evaluation of variational forms
involves hard-to-exploit redundant
subexpressions

Major savings are possible through
aggressive large-scale factorisation

(Preliminary results presented at
FEniCS’11, paper under review)

Mapping the design space – h/p
!   The balance

between local- vs
global-assembly
depends on
multiple factors

! Eg tetrahedral vs
hexahedral

! Eg higher-order
elements

!   Local vs Global
assembly is not
the only
interesting option

Relative execution time
on CPU (dual quad Core2)

Helmholtz problem with
Hex elements
With increasing order

E
xe

cu
tio

n
tim

e
no

rm
al

is
ed

 w
rt

lo
ca

l e
le

m
en

t a
pp

ro
ac

h

(C.D.Cantwell, S.J.Sherwin, R.M.Kirby, P.H.J.Kelly, From h to p efficiently)

Mapping the design space – h/p
!   Contrast: with

tetrahedral
elements

!   Local is faster
than global only
for much higher-
order

!   Sum factorisation
never wins

Relative execution time
on CPU (dual quad

Core2)

Helmholtz problem with
Tet elements

With increasing order

E
xe

cu
tio

n
tim

e
no

rm
al

is
ed

 w
rt

lo
ca

l a
ss

em
bl

y

(Cantwell et al, provisional results under review)

End-to-end accuracy drives algorithm selection

C.D. Cantwell et al. From h to p efficiently

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6
103

104

105

10-1 10-2 10-3 10-4

h

L2-Error

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6
103

104

105

10-1 10-2 10-3 10-4

h

L2-Error

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6
103

104

105

10-1 10-2 10-3 10-4

h

L2-Error

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6

102

103

104

10-1 10-2 10-3 10-4

R
un

tim
e

(µ
s)

L2-Error

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6

102

103

104

10-1 10-2 10-3 10-4

R
un

tim
e

(µ
s)

L2-Error

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6

102

103

104

10-1 10-2 10-3 10-4

R
un

tim
e

(µ
s)

L2-Error

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6

102

103

104

10-1 10-2 10-3 10-4

h

P

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6

102

103

104

10-1 10-2 10-3 10-4

h

P

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6

102

103

104

10-1 10-2 10-3 10-4

h

P

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6

102

103

104

10-1 10-2 10-3 10-4

R
un

tim
e

(µ
s)

P

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6

102

103

104

10-1 10-2 10-3 10-4

R
un

tim
e

(µ
s)

P

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6

102

103

104

10-1 10-2 10-3 10-4

R
un

tim
e

(µ
s)

P

Figure 5: Contour plots showing the runtime (dotted lines) and L2-error (solid lines and fixed

across all plots) for each (h, P)-combination in solving the Helmholtz problem using tetrahedral

elements. The three evaluation strategies are shown: sum-factorisation (a), elemental matrices (b)

and global matrix (c). A comparison with the optimal strategy chosen for each discretisation is

shown in (d), where the filled circle marks the optimal discretisation to attain a solution with a

10% error tolerance, while the open circle indicates the optimal discretisation for 0.1%.

10

h	

C.D. Cantwell et al. From h to p efficiently

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6
103

104

105

10-1 10-2 10-3 10-4

h

L2-Error

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6
103

104

105

10-1 10-2 10-3 10-4

h

L2-Error

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6
103

104

105

10-1 10-2 10-3 10-4

h

L2-Error

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6

102

103

104

10-1 10-2 10-3 10-4

R
un

tim
e

(µ
s)

L2-Error

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6

102

103

104

10-1 10-2 10-3 10-4

R
un

tim
e

(µ
s)

L2-Error

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6

102

103

104

10-1 10-2 10-3 10-4

R
un

tim
e

(µ
s)

L2-Error

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6

102

103

104

10-1 10-2 10-3 10-4

h

P

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6

102

103

104

10-1 10-2 10-3 10-4

h

P

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6

102

103

104

10-1 10-2 10-3 10-4

h

P

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6

102

103

104

10-1 10-2 10-3 10-4

R
un

tim
e

(µ
s)

P

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6

102

103

104

10-1 10-2 10-3 10-4

R
un

tim
e

(µ
s)

P

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6

102

103

104

10-1 10-2 10-3 10-4

R
un

tim
e

(µ
s)

P

Figure 5: Contour plots showing the runtime (dotted lines) and L2-error (solid lines and fixed

across all plots) for each (h, P)-combination in solving the Helmholtz problem using tetrahedral

elements. The three evaluation strategies are shown: sum-factorisation (a), elemental matrices (b)

and global matrix (c). A comparison with the optimal strategy chosen for each discretisation is

shown in (d), where the filled circle marks the optimal discretisation to attain a solution with a

10% error tolerance, while the open circle indicates the optimal discretisation for 0.1%.

10

!   Helmholtz
problem using
tetrahedral
elements

!   What is the best
combination of h
and p?

!   Depends on the
solution accuracy
required

!   Which, in turn
determines
whether to
choose local vs
global assembly

Optimum
discretisation
for 10%
accuracy

Optimum
discretisation
for 0.1%
accuracy

Blue dotted lines show runtime of optimal strategy; Red solid lines show L2 error

Conclusions and Further Work
!  From these experiments:
!  Algorithm choice makes a big

difference in performance
!  The best choice varies with the

target hardware
!  The best choice also varies with

problem characteristics and
accuracy objectives

!  We need to automate code
generation

!  So we can navigate the design
space freely

!  And pick the best implementation
strategy for each context

Target hardware context

Application-domain context

Unifying
representation

Where this is going

! For OP2:
! For aeroengine turbomachinery CFD, funded by Rolls Royce and the

TSB (the SILOET programme)
! In progress:

! For Fluidity, and thus into the Imperial College Ocean Model
! Feasibility studies being pursued: UK Met Office (“Gung Ho” project),

Deutsche Wetterdienst ICON model, Nektar++

! For UFL and our Multicore Form Compiler
! For Fluidity, supporting automatic generation of adjoint models

! Beyond:
! Similar DSL ideas for the ONETEP quantum chemistry code
! Similar DSL ideas for 3D scene understanding

Acknowledgements

!  Partly funded by
!  NERC Doctoral Training Grant (NE/

G523512/1)
!  EPSRC “MAPDES” project (EP/I00677X/1)
!  EPSRC “PSL” project (EP/I006761/1)
!  Rolls Royce and the TSB through the

SILOET programme
!  AMD, Codeplay, Maxeler Technologies

