Modular forest-of-octrees AMR: algorithms and interfaces

Carsten Burstedde

Institut für Numerische Simulation (INS) Rheinische Friedrich-Wilhelms-Universität Bonn, Germany

June 06, 2012

FEniCS '12 Simula Research Laboratory, Norway

Additional Credits

Parallel AMR

 joint work with Lucas C. Wilcox, Tobin Isaac, Tiankai Tu (ICES, The University of Texas at Austin, USA)

Numerical methods and applications

 joint work with Georg Stadler, James Martin (ICES), Mike Gurnis, Laura Alisic (CalTech, Pasadena, USA)

And most importantly

Omar Ghattas (ICES)

Key points about AMR

AMR—Adaptive Mesh Refinement

- local refinement
- local coarsening
- dynamic
- parallel
- (element-based)
- (general geometry)

Key points about AMR

AMR—Adaptive Mesh Refinement

- local refinement
- local coarsening
- dynamic
- parallel
- (element-based)
- (general geometry)

Key points about AMR

AMR—Adaptive Mesh Refinement

- local refinement
- local coarsening
- dynamic
- parallel
- (element-based)
- (general geometry)

Why (not) use AMR? AMR—Adaptive Mesh Refinement

Benefits (problem-dependent)

- Reduction in problem size
- Reduction in run time
- Gain in accuracy per degree of freedom
- Gain in modeling flexibility

Challenges (fundamental)

- Storage: Irregular mesh structure
- Computational: Tree traversals and searches
- Networking: Irregular communication patterns
- Numerical: Horizontal/vertical projections

Mantle convection: High resolution for faults and plate boundaries

Artist rendering Image by US Geological Survey

Simul. (w. M. Gurnis, L. Alisic, CalTech) Surface viscosity (colors), velocity (arrows)

Mantle convection: High resolution for faults and plate boundaries

Zoom into the boundary between the Australia/New Hebrides plates

Mantle convection: High resolution for faults and plate boundaries

Zoom into the boundary between the Australia/New Hebrides plates

Ice sheet dynamics: Complex geometry and boundaries

Adapt to geometry from SeaRISE data

Seismic wave propagation: Adapt to local wave length

Varying local wave speeds

Adapt to local wave length

AMR—Adaptive Mesh Refinement

Initial mesh

CSG description \longrightarrow mesh generator \longrightarrow XML file

- uniform element sizes
- finer resolution "where it matters"

a-priori adaptation

"Where it matters"

is sometimes known, often unknown beforehand

- emerging features
- moving fronts

a-posteriori adaptation

AMR—Adaptive Mesh Refinement

Common AMR cycle

Solve \longrightarrow Mark \longrightarrow Refine \longrightarrow (repeat)

Mesh exists standalone (topology/geometry)

AMR—Adaptive Mesh Refinement

Common AMR cycle

Solve \longrightarrow Estimate \longrightarrow Mark \longrightarrow Refine \longrightarrow (repeat)

- Mesh exists standalone (topology/geometry)
- Fields (function space elements) are tied to a mesh

 $\mathsf{Solve} \longrightarrow \mathsf{Solution} \longrightarrow \mathsf{Indicator} \longrightarrow \mathsf{Flag} \longrightarrow \mathsf{Mark}$

AMR—Adaptive Mesh Refinement

Common AMR cycle

Solve \longrightarrow Estimate \longrightarrow Mark \longrightarrow Refine \longrightarrow (repeat)

- Mesh exists standalone (topology/geometry)
- Fields (function space elements) are tied to a mesh

AMR-Adaptive Mesh Refinement

Estimator, Flag, Interpolate: element-local (conforming)

AMR—Adaptive Mesh Refinement

Estimator, Flag, Interpolate: element-local (non-conforming)

Hanging node values are not part of Solution, never stored

AMR—Adaptive Mesh Refinement

Parallelization aspects

 $S \longrightarrow E \longrightarrow M \longrightarrow R \longrightarrow$ Balance \longrightarrow Partition \longrightarrow (repeat)

▶ 1. Balance: restore 2:1 non-conformity

Global split propagation \Rightarrow tricky algorithm (in serial) \Rightarrow extra tricky in parallel

AMR—Adaptive Mesh Refinement

Parallelization aspects

 $\mathsf{S} \longrightarrow \mathsf{E} \longrightarrow \mathsf{M} \longrightarrow \mathsf{R} \longrightarrow \mathsf{Balance} \longrightarrow \mathsf{Partition} \longrightarrow (\mathsf{repeat})$

- > 2. Partition: restore load balance
- Mesh \equiv graph: partition is NP-hard $\frac{1}{2}$

Add extra structure (\Leftrightarrow reduce search space) \Rightarrow faster algorithms

AMR—Adaptive Mesh Refinement

Parallelization aspects

 $S \longrightarrow E \longrightarrow M \longrightarrow R \longrightarrow$ Balance \longrightarrow Partition \longrightarrow (repeat)

- 3. Nodes: create globally unique dof indices
- ▶ Nodes relevant to 2 or more processes \Rightarrow ownership conflict

Add ghost elements (⇒ parallel algorithm) ⇒ resolve conflicts locally

Modular AMR

AMR—Adaptive Mesh Refinement

Yesterday's quotes on scalability

- "straightforward, but time required"
- "software engineering problem"
- Parallel AMR algorithms are neither

Modular tools available

- Outsource distributed mesh generation/modification
- Encapsulate algorithms, define interfaces
- Differ in scalability and speed/memory footprint

AMR—Adaptive Mesh Refinement

Types of AMR

Block-structured (patch-based) AMR

www.cactuscode.org

AMR—Adaptive Mesh Refinement

Types of AMR

Conforming tetrahedral (unstructured) AMR

mesh data courtesy David Lazzara, MIT

Types of AMR

- Octree maps to cube-like geometry
- 1:1 relation between octree leaves and mesh elements

Types of AMR

- Octree maps to cube-like geometry
- 1:1 relation between octree leaves and mesh elements

Types of AMR

- Octree maps to cube-like geometry
- 1:1 relation between octree leaves and mesh elements

Types of AMR

- Octree maps to cube-like geometry
- 1:1 relation between octree leaves and mesh elements

Types of AMR

- Octree maps to cube-like geometry
- 1:1 relation between octree leaves and mesh elements

Types of AMR

- Octree maps to cube-like geometry
- 1:1 relation between octree leaves and mesh elements

Types of AMR

- Octree maps to cube-like geometry
- 1:1 relation between octree leaves and mesh elements

Types of AMR

- Octree maps to cube-like geometry
- 1:1 relation between octree leaves and mesh elements

Types of AMR

- Octree maps to cube-like geometry
- 1:1 relation between octree leaves and mesh elements

Types of AMR

- Octree maps to cube-like geometry
- 1:1 relation between octree leaves and mesh elements

Types of AMR

- Space-filling curve (SFC): Fast parallel partitioning
- Fast parallel tree algorithms for sorting and searching

Efficient encoding and total ordering

- \blacktriangleright 1:1 relation between leaves and elements \rightarrow efficient encoding
- path from root to node

10 01 11

Efficient encoding and total ordering

▶ 1:1 relation between leaves and elements \rightarrow efficient encoding

 \blacktriangleright path from root to node, append level ~ 10 01 11 11 \rightarrow key

Efficient encoding and total ordering

▶ 1:1 relation between leaves and elements \rightarrow efficient encoding

- \blacktriangleright path from root to node, append level ~ 10 01 11 11 \rightarrow key
- derive element x-coordinate

 $0 \ 1 \ 1 \rightarrow x = 3$

Efficient encoding and total ordering

▶ 1:1 relation between leaves and elements \rightarrow efficient encoding

- \blacktriangleright path from root to node, append level ~ 10 01 11 11 \rightarrow key
- derive element x-coordinate
- derive element y-coordinate

Fast elementary operations

• Construct parent or children \rightarrow vertical tree step $\mathcal{O}(1)$

 \blacktriangleright path from root to node, append level ~ 10 01 11 11 \rightarrow key

Fast elementary operations

• Construct parent or children \rightarrow vertical tree step $\mathcal{O}(1)$

- ▶ path from root to node, append level 10 01 11 11
- ▶ zero level coordinates, decrease level 10 01 00 $10 \rightarrow \text{key}$

Fast elementary operations

• Construct neighbors \rightarrow horizontal tree step/jump $\mathcal{O}(1)$

 \blacktriangleright path from root to node, append level ~ 10 01 00 10 \rightarrow key

Fast elementary operations

- Construct neighbors \rightarrow horizontal tree step/jump $\mathcal{O}(1)$
- path from root to node, append level 10 01 00 10
- Substract x-coordinate increment 10 00 00 $10 \rightarrow \text{key}$
- Search on-processor element \rightarrow tree search $\mathcal{O}(\log \frac{N}{P})$

Fast elementary operations

• Construct neighbors \rightarrow horizontal tree step/jump $\mathcal{O}(1)$

 \blacktriangleright path from root to node, append level ~ 10 01 00 10 \rightarrow key

Fast elementary operations

- Construct neighbors \rightarrow horizontal tree step/jump $\mathcal{O}(1)$
- path from root to node, append level 10 01 00 10
- ▶ Add x-coordinate increment 11 00 00 $10 \rightarrow \text{key}$
- Search off-processor element-owner \rightarrow search SFC $\mathcal{O}(\log P)$

Synthesis: Forest of octrees

From tree...

Limitation: Cube-like geometric shapes

Synthesis: Forest of octrees

- Advantage: Geometric flexibility
- Challenge: Non-matching coordinate systems between octrees

Connect SFC through all octrees

Minimal global shared storage (metadata)

- ▶ Shared list of octant counts per core $(N)_p$ $4 \times P$ bytes
- ▶ Shared list of partition markers $(k; x, y, z)_p$ 16 × P bytes
- ▶ 2D example above (h = 8): markers (0; 0, 0), (0; 6, 4), (1; 0, 4)

[1] C. Burstedde, L. C. Wilcox, O. Ghattas (SISC, 2011)

p4est is a pure AMR module

- Rationale: Support diverse numerical approaches
- Internal state: Element ordering and parallel partition
- Provide minimal API for mesh modification

Connect to numerical discretizations / solvers ("App")

- p4est API calls are like MPI collectives (atomic to App)
- p4est API hides parallel algorithms and communication
- \blacktriangleright App \rightarrow p4est: API invokes per-element callbacks
- App \leftarrow p4est: Access internal state read-only

p4est core API (for "write access")

- p4est_new: Create a uniformly refined, partitioned forest
- ▶ p4est_refine: Refine per-element acc. to 0/1 callbacks
- ▶ p4est_coarsen: Coarsen 2^d elements acc. to 0/1 callbacks
- p4est_balance: Establish 2:1 neighbor sizes by add. refines
- p4est_partition: Parallel redistribution acc. to weights
- p4est_ghost: Gather one layer of off-processor elements

p4est "random read access" not formalized

Loop through p4est data structures as needed

Weak scalability on ORNL's "Jaguar" supercomputer

Cost of New, Refine, Coarsen, Partition negligible

▶ 5.13×10^{11} octants; < 10 seconds per million octants per core

Weak scalability on ORNL's "Jaguar" supercomputer

Dominant operations: Balance and Nodes scale over 18,360x
5.13 × 10¹¹ octants; < 10 seconds per million octants per core

What is a p4est element? Anything!

The App defines how it will interprete an element

Examples

- Continuous bi-/trilinear elements
- High-order continuous spectral elements
- ► High-order DG elements with Gauss quadrature, LGL, ...
- ► An *ijk* subgrid optimized for GPU computation
- An M^d patch from PyClaw
- ▶ ...

AMR—Adaptive Mesh Refinement

A-priori adaptation

A-posteriori/dynamic adaptation

[2] C. Burstedde, O. Ghattas, G. Stadler, et.al. (TeraGrid, 2008)

App: Dynamic-mesh DG (3D advection) Weak scalability on ORNL's "Jaguar" supercomputer

3,200 high-order elements per core from 12 to 220,320 cores

Overall parallel efficiency is 70% over a 18,360x scale

Acknowledgements

Publications

Homepage: http://burstedde.ins.uni-bonn.de/

Funding

- NSF DMS, OCI PetaApps, OPP CDI
- DOE SciDAC TOPS, SC
- AFOSR

HPC Resources

- Texas Advanced Computing Center (TACC)
- National Center for Computational Science (NCCS)