Compact Stencils for the Shallow Water Equations on Graphics Processing Units

Brief Outline

- Introduction to Computing on GPUs
- The Shallow Water Equations
- Compact Stencils on the GPU
- Physical correctness
- Summary

Introduction to GPU Computing

Technology for a better society

(Moore, 1965)

4

The end of frequency scaling

1971: Intel 4004, 2300 trans, 740 KHz

1982: Intel 80286, 134 thousand trans, 8 MHz

1993: Intel Pentium P5, 1.18 mill. trans, 66 MHz

2000: Intel Pentium 4, 42 mill. trans, 1.5 GHz

2010: Intel Nehalem, 2.3 bill. trans, 8 X 2.66 GHz

5

Technology for a better society

How does parallelism help?

The GPU: Massive parallelism

	CPU	GPU
Cores	4	16
Float ops / clock	64	1024
Frequency (MHz)	3400	1544
GigaFLOPS	217	1580
Memory (GiB)	32+	3

Performance

GPU Programming: From Academic Abuse to Industrial Use

GPU Execution mode

CPU scalar op

CPU scalar op CPU SSE op

GPU Warp op

- 1 thread, 1 operand on 1 data element
- 1 thread, 1 operand on 2-4 data elements
- 1 warp = 32 threads, 32 operands on 32 data elements
 - Exposed as individual threads
 - Actually runs the same instruction
 - Divergence implies serialization and masking

Warp Serialization and Masking

Hardware serializes and masks divergent code flow:

- Programmer is relieved of fiddling with element masks (which is necessary for SSE)
- But execution time is still the sum of branches taken
- Worst case:
 - All warp threads takes individual branches (1/32 perfomance)
- Thus, important to minimize divergent code flow!
 - Move conditionals into data, use min, max, conditional moves.

Example: Warp Serialization in Newton's Method

increases performance from 0.84ms to 0.69ms (kernel only)

(But fails 7 of 1 000 000 times since multiple zeros isn't handled properly, but that is a different story \odot)

Examples of early GPU research

Registration of medical data (~20x)

Preparation for FEM (~5x)

Fluid dynamics and FSI (Navier-Stokes)

Inpainting (~400x matlab code)

Euler Equations (~25x)

SW Equations (~25x)

Marine aqoustics (~20x)

Water injection in a fluvial reservoir (20x)

Examples from SINTEF

Examples of GPU use today

Compact stencils on the GPU: Efficient Flood Simulations

The Shallow Water Equations

- A hyperbolic partial differential equation
 - First described by de Saint-Venant (1797-1886)
 - Conservation of mass and momentum
 - Gravity waves in 2D free surface
- Gravity-induced fluid motion
 - Governing flow is horizontal
- Not only for water:
 - Simplification of atmospheric flow
 - Avalanches

....

The Shallow Water Equations

Target Application Areas

1975: Banqiao Dam (230 000+) 1959: Malpasset (423)

Images from wikipedia.org, www.ecolo.org

Two important uses of shallow water simulations

- In preparation for events: Evaluate possible scenarios
 - Simulation of many ensemble members
 - Creation of inundation maps
 - Creation of Emergency Action Plans
- In response to ongoing events
 - Simulate possible scenarios *in real-time*
 - Simulate strategies for flood protection (sand bags, etc.)
 - Determine who to evacuate based on simulation, not guesswork

• High requirements to performance => Use the GPU

Simulation result from NOAA

Inundation map from "Los Angeles County Tsunami Inundation Maps", http://www.conservation.ca.gov/cgs/geologic_hazards/Tsunami/Inundation_Maps/LosAngeles/Pages/LosAngeles.asp

Solving a partial differential equation on the GPU

- Before we start with the shallow water equations, let us examine something slightly less complex: the heat equation
- Describes diffusive heat conduction
- Prototypical partial differential equation

$$\frac{\partial u}{\partial t} = \kappa \frac{\partial^2 u}{\partial x^2}$$

• u is the temperature, kappa is the diffusion coefficient, t is time, and x is space.

Finding a solution to the heat equation

- Solving such partial differential equations analytically is nontrivial in all but a few very special cases
- Solution strategy: replace the continuous derivatives with approximations at a set of grid points
- Solve for each grid point numerically on a computer
- Use many grid points, and high order of approximation to get good results

NTEF

The Heat Equation with an implicit scheme

1. We can construct an *implicit* scheme by carefully choosing the "correct" approximation of derivatives $-ru_{i-1}^n + (1+2r)u_i^n - ru_{i+1}^n = u_i^{n-1}, \qquad r = \frac{\kappa\Delta t}{\Delta r^2}$

2. This ends up in a system of linear equations

1	0	0	0	0	0	0	$\begin{bmatrix} u_0^n \end{bmatrix}$		$\begin{bmatrix} u_0^{n-1} \end{bmatrix}$
-r	1 + 2r	-r	0	0	0	0	u_1^n		u_1^{n-1}
0	-r	1 + 2r	-r	0	0	0	u_2^n		u_2^{n-1}
0	0	-r	1+2r	-r	0	0	u_3^n	=	u_3^{n-1}
0	0	0	-r	1+2r	-r	0	u_4^n		u_4^{n-1}
0	0	0	0	-r	$1\!+\!2r$	-r	u_5^n		u_5^{n-1}
0	0	0	0	0	0	1	$\begin{bmatrix} u_6^n \end{bmatrix}$		u_6^{n-1}

3. Solve Ax=b using standard GPU methods to evolve the solution in time

The Heat Equation with an implicit scheme

- Such implicit schemes are often sought after
 - They allow for large time steps,
 - They can be solved using standard tools
 - Allow complex geometries
 - They can be very accurate
 - ...
- However...
 - for many time-varying phenomena, we are also interested in the temporal dynamics of the problem
 - Linear algebra solvers can be **slow and memory hungry**, especially on the GPU

Algorithmic and numerical performance

- For all problems, the total performance is the product of the algorithmic **and** the numerical performance
 - Your mileage may vary: algorithmic performance is highly problem dependent
- Sparse linear algebra solvers have low numerical performance
 - Only able to utilize a fraction of the capabilities of CPUs, and worse on GPUs
- For suitable problems, explicit schemes with compact stencils can give the best performance
 - Able to reach near-peak performance

Explicit schemes with compact stencils

- Explicit schemes can give rise to compact stencils
 - Embarrassingly parallel
 - Perfect for the GPU!

$$\frac{1}{\Delta t}(u_i^{\underline{n}} - u_i^{\underline{n-1}}) = \frac{\kappa}{\Delta x^2}(u_{i-1}^n - 2u_i^n + u_{i+1}^n)$$

$$\frac{1}{\Delta t}(u_i^{\underline{n+1}} - u_i^{\underline{n}}) = \frac{\kappa}{\Delta x^2}(u_{i-1}^n - 2u_i^n + u_{i+1}^n)$$

Back to the shallow water equations

$$\begin{bmatrix} h\\ hu\\ hv \end{bmatrix}_{t} + \begin{bmatrix} hu\\ hu^{2} + \frac{1}{2}gh^{2}\\ huv \end{bmatrix}_{x} + \begin{bmatrix} hv\\ huv\\ hv^{2} + \frac{1}{2}gh^{2} \end{bmatrix}_{y} = \begin{bmatrix} 0\\ -ghB_{x}\\ -ghB_{y} \end{bmatrix} + \begin{bmatrix} 0\\ -gu\sqrt{u^{2} + v^{2}}/C_{z}^{2}\\ -gv\sqrt{u^{2} + v^{2}}/C_{z}^{2} \end{bmatrix}$$

- A Hyperbolic partial differential equation
 - Enables explicit schemes
- Solutions form discontinuities / shocks
 - Require high accuracy in smooth parts without oscillations near discontinuities
- Solutions include dry areas
 - Negative water depths ruin simulations
- Often high requirements to accuracy
 - Order of spatial/temporal discretization
 - Floating point rounding errors
- Can be difficult to capture "lake at rest"

A standing wave or *shock*

Finding the perfect numerical scheme

- We want to find a numerical scheme that
 - Works well for our target scenarios
 - Handles dry zones (land)
 - Handles shocks gracefully (without smearing or causing oscillations)
 - Preserves "lake at rest"
 - Have the accuracy required for capturing the physics
 - Preserves the physical quantities
 - Fits GPUs well
 - Works well with single precision
 - Is embarrassingly parallel
 - Has a compact stencil
 - . . .

The Finite Volume Scheme of Choice*

Scheme of choice: A. Kurganov and G. Petrova, <u>A Second-Order Well-Balanced Positivity Preserving</u> <u>Central-Upwind Scheme for the Saint-Venant System</u> <u>Communications in Mathematical Sciences</u>, 5 (2007), 133-160

- Second order accurate fluxes
- Total Variation Diminishing
- Well-balanced (captures lake-at-rest)
- Good (but not perfect) match with GPU execution model

* With all possible disclaimers

Discretization

- Our grid consists of a set of *cells* or *volumes*
 - The bathymetry is a piecewise bilinear function
 - The physical variables (h, hu, hv), are piecewise constants per volume

- Algorithm:
 - 1. Reconstruct physical variables
 - 2. Evolve the solution
 - 3. Average over grid cells

Kurganov-Petrova Spatial Discretization (Computing fluxes)

Temporal Discretization (Evolving in time)

Courant-Friedrichs-Lewy condition

- Explicit scheme, time step restriction:
 - Time step size restricted by a Courant-Friedrichs-Lewy condition
 - Each wave is allowed to travel at most one quarter grid cell per time step:

$$\Delta t \leq \frac{1}{4} \min \left\{ \Delta x / \max_{\Omega} \left| u \pm \sqrt{gh} \right|, \Delta y / \max_{\Omega} \left| v \pm \sqrt{gh} \right| \right\}$$

A Simulation Cycle

Implementation – GPU code

- Four CUDA kernels:
 - 87% Flux
 - <1% Timestep size (CFL condition)
 - 12% Forward Euler step
 - <1% Set boundary conditions

Flux kernel – Domain decomposition

- A nine-point nonlinear stencil
 - Comprised of simpler stencils
 - Heavy use of shared mem
 - Computationally demanding

- Traditional Block Decomposition
 - Overlaping ghost cells (aka. apron)
 - Global ghost cells for boundary conditions
 - Domain padding

Flux kernel – Block size

- Block size is 16x14
 - Warp size: multiple of 32
 - Shared memory use: 16 shmem buffers use ~16 KB
 - Оссиралсу
 - Use 48 KB shared mem, 16 KB cache
 - Three resident blocks
 - Trades cache for occupancy
 - Fermi cache
 - Global memory access

Flux kernel - computations

- Calculations
 - Flux across north and east interface
 - Bed slope source term for the cell
 - Collective stencil operations
- n threads, and n+1 interfaces
 - one warp performs extra calculations!
 - Alternative is one thread per stencil operation (Many idle threads, and extra register pressure)

Flux kernel – flux limiter

- Limits the fluxes to obtain non-oscillatory solution
 - Generalized minmod limiter
 - Least steep slope, or
 - Zero if signs differ
 - Creates divergent code paths
- Use branchless implementation (2007)
 - Requires special sign function
 - Much faster than naïve approach

$$MM(a, b, c) = \begin{cases} \min(a, b, c), & \{a, b, c\} > 0\\ \max(a, b, c), & \{a, b, c\} < 0\\ 0, & \end{cases}$$

(2007) T. Hagen, M. Henriksen, J. Hjelmervik, and K.-A. Lie. <u>How to solve systems of conservation laws numerically using the graphics processor as a high-performance computational engine</u>. Geometrical Modeling, Numerical Simulation, and Optimization: Industrial Mathematics at SINTEF, (211–264). Springer Verlag, 2007.

Timestep size kernel

- Flux kernel calculates wave speed per cell
 - Find global maximum
 - Calculate timestep using the CFL condition
 - Parallel reduction:
 - Models CUDA SDK sample
 - Template code
 - Fully coalesced reads
 - Without bank conflicts

- Perform partial reduction in flux kernel
- Reduces memory and bandwidth by a factor 192

Boundary conditions kernel

- Global boundary uses ghost cells
 - Fixed inlet / outlet discharge
 - Fixed depth
 - Reflecting
 - Absorbing

- Can also supply hydrograph
 - Tsunamies
 - Storm surges
 - Tidal waves

Technology for a better society

Boundary conditions kernel

- Use CPU-side if-statement instead of GPU-side
 - Similar to CUDA SDK reduction sample, using templates:
 - One block sets all four boundaries
 - Boundary length (>64, >128, >256, >512)
 - Boundary type ("none", reflecting, fixed depth, fixed discharge, absorbing outlet)
 - In total: 4*5*5*5 = 2500 realizations

switch(block.x) { case 512: BCKernelLauncher<512, N, S, E, W>(grid, block, stream); break; case 256: BCKernelLauncher<256, N, S, E, W>(grid, block, stream); break; case 128: BCKernelLauncher<128, N, S, E, W>(grid, block, stream); break; case 64: BCKernelLauncher< 64, N, S, E, W>(grid, block, stream); break;

Multi-GPU simulations

- Because we have a finite domain of dependence, we can create independent partitions of the domain and distribute to multiple GPUs
- Modern PCs have up-to four GPUs
- Near-perfect weak and strong scaling

Collaboration with Martin L. Sætra

Early exit optimization

- Observation: Many dry areas do not require computation
 - Use a small buffer to store wet blocks
 - Exit flux kernel if nearest neighbors are dry

- Up-to 6x speedup (mileage may vary)
 - Blocks still have to be scheduled
 - Blocks read the auxiliary buffer
 - One wet cell marks the whole block as wet

Sparse domain optimization

- The early exit strategy launches too many blocks
- Dry blocks should not need to check that they are dry!

Sparse Compute:

Do not perform any computations on dry parts of the domain

Sparse Memory:

Do not save any values in the dry parts of the domain

Ph.D. work of Martin L. Sætra

Sparse domain optimization

- 1. Find all wet blocks
- 2. Grow to include dependencies
- 3. Sort block indices and launch the required number of blocks
- Similarly for memory, *but it gets quite complicated*...
- 2x improvement over early exit (mileage may vary)!

Real-time visualization

- When the data is on the GPU, visualize it directly
 - Has about 10% performance impact
 - http://www.youtube.com/watch?v=FbZBR-FjRwY

Accuracy and Physical correctness

Accuracy: Single Versus Double Precision

- What is the relative error in mass conservation for single and double precision?
- What is the discrepancy between the two?
- Three different test cases
 - Low water depth (wet only)
 - High water depth (wet only)
 - Synthetic terrain with dam break (wet-dry)
- Conclusions:
 - We have loss in conservation on the order of machine epsilon
 - Single precision gives larger error than double
 - Errors related to the wet-dry front is more than an order of magnitude larger
 - For our application areas, single precision is sufficient

Verification: Parabolic basin

- Single precision is sufficient, but do we solve the equations?
- Test against analytical 2D parabolic basin case (Thacker)
 - Planar water surface oscillates
 - 100 x 100 cells
 - Horizontal scale: 8 km
 - Vertical scale: 3.3 m

- Simulation and analytical match well
 - But, as most schemes, growing errors along wet-dry interface

Validation: Barrage du Malpasset

- We model the equations correctly, but can we model real events?
- South-east France near Fréjus: Barrage du Malpasset
 - Double curvature dam, 66.5 m high, 220 m crest length, 55 million m³
 - Bursts at 21:13 December 2nd 1959
 - Reaches Mediterranean in 30 minutes (speeds up-to 70 km/h)
 - 423 casualties, \$68 million in damages
 - Validate against experimental data from 1:400 model
 - 482 000 cells (1099 x 439 cells)
 - 15 meter resolution
- Our results match experimental data very well
 - Discrepancies at gauges 14 and 9 present in most (all?) published results

Summary

Summary

- Shallow water simulations on the GPU vastly outperform CPU implementations
 - Able to run faster-than-real-time!
- Physical correctness can be ensured
 - Even single precision is sufficiently accurate
- Multi-GPU and sparse domain optimizations
 - Two GPUs give twice the performance
 - Computation on land avoided

Thank you for your attention Questions?

Contact: André R. Brodtkorb Email: <u>Andre.Brodtkorb@sintef.no</u> Homepage: <u>http://babrodtk.at.ifi.uio.no/</u>

Youtube: <u>http://youtube.com/babrodtk</u> SINTEF: <u>http://www.sintef.no/heterocomp</u>

"This slide is intentionally left blank"

