SyFi Tutorial

Kent-Andre Mardal
November 22, 2005

Contents
1 Introduction 1
2 Software 3
2.1 License. e 3
2.2 Installation 3
3 A Finite Element 4
3.1 BasicConcepts 4
3.1.1 Polygons 5
3.2 Polynomial Spaceso 10
3.3 A PFinite Element 11
3.4 Degreesof Freedom oL oL 13

1 Introduction

The finite element package SyFi is a C++ library built on top of the symbolic
math library GiNaC (www.ginac.de). The name SyF1i stands for Symbolic Finite
elements. The package provides polygonal domains, polynomial spaces, and
degrees of freedom as symbolic expressions that are easily manipulated. This
makes it easy to define and use finite elements.

All the test examples described in this tutorial can be found in the directory
tests. The reader is of course encouraged to run the examples along with the
reading.

Before we start to describe SyFi, we need to briefly review the basic concepts
in GiNaC. GiNaC is an open source C++ library for symbolic mathematics,
which has a strong support for polynomials. The basic structure in GiNaC
is an ex, which may contain either a number, a symbol, a function, a list of
expressions, etc. (see simple.cpp):

ex pi = 3.14;
ex x = symbol("x");
ex f = cos(x);

ex list = lst(pi,x,f);

Hence, ex is a quite general class, and it is the cornerstone of GiNaC. It has a lot
of functionality, for instance differentiation and integration (see simple2.cpp),

// initialization (f = x"2 + y~2)
ex f = x*x + yxy;

// differentiation (dfdx = df/dx = 2x)
ex dfdx = f.diff(x,1);

// integration (intf = 1/3+y~2, integral of f(x,y) from x=0 to x=1)
ex intf = integral(x,0,1,f);

GiNaC also has a structure for lists of expressions, 1st, with the function
nops () which returns the size of the list, and operator [int il or the function
op(int i) which returns the (i — 1)’th element!.

We recommend the reader to glance through the GiNaC documentation be-
fore proceeding with this tutorial. GiNaC provides all the basic tools for ma-
nipulation of polynomials, such as differentiation and integration with respect
to one variable. Our goal with the SyFi package is to extend GiNaC with higher
level constructs such as differentiation with respect to several variables (e.g., V),
integration of functions over polygonal domains, and polynomial spaces. All of
which are basic ingredients in the finite element method.

Our motivation behind this project is threefold. First, we wish to make ad-
vanced finite element methods more readily available. We want to do this by
implementing a variety of finite elements and functions for computing element
matrices. Second, in our experience developing and debugging codes for the
finite element method is hard. Having the basis functions and the weak form
as symbolic expressions, and being able to manipulate them may be extremely
valuable. For instance, being able to differentiate the weak form to compute the
Jacobian in the case of a nonlinear PDE, eliminates a lot of handwriting and
coding. Third, having the symbolic expressions it is reasonable that it is pos-
sible to generate efficient code by traversing the expressions as three structures
(which GiNaC has support for). Alternatively, we can simply evaluate the basis
functions, its derivatives, etc. in quadrature points and generate C++ code for
these expressions. GiNaC has basic tools for code generation.

To try to motivate the reader, we also show an example where we compute
the element matrix for the weak form of the Poisson equation, i.e.,

T

We remark that the following example is an attempt to make an appetizer. All
concepts will be carefully described during the tutorial.

void compute_element_matrix(Polygon& T, int order) {

std: :map<std::pair<int,int>, ex> A; // matrix of expression
std::pair<int,int> index; // index in matrix

LagrangeFE fe; // Lagrangian element of any order
fe.set(order); // set the order

fe.set(domain) ; // set the polygon
fe.compute_basis_functions(); // compute the basis functions

for (int i=1; i<= fe.nbf() ; i++) {
index.first = i;
for (int j=1; j<= fe.nbf() ; j++) {

11t is standard C/C++ syntax that operator [int i] should return the (i — 1)’th element.

index.second = j;

ex nabla = inner(grad(fe.N(i)), grad(fe.N(j))); // compute the integrands
ex Aij = T.integrate(nabla); // compute the weak form
Alindex] = Aij; // update element matrix

In the above example, everything is computed symbolically. Even the poly-
gon may be an abstract polygon, e.g., specified as a triangle with vertices xg,
X1, and Xz, where the vertices are symbols and not concrete points. Notice also,
that we usually use STL containers to store our datastructure. This leads to
the somewhat unfamiliar notation Al[index] instead of A[i,j].

Finally, we have to warn the reader, this project is still within its initial
phase. Only Lagrangian elements and the weak form for the Poisson prob-
lem have actually been implemented (at least in a nice clean way, some other
methods can be found in the sandbox, but these are not yet finished.).

2 Software

2.1 License

This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc., 675 Mass
Ave, Cambridge, MA 02139, USA.

In the case where the GNU licence does not fit your need. Contact the
author at kent-and@simula.no.

2.2 Installation

Dependencies SyFiisa C++ library and therefore a C++ compiler is needed.
At present the library has only been tested with the GNU C++ compiler. The
configure script is a shell script made by the tools Automake and Autoconf.
Hence, you can run this script with, e.g., the GNU Bourne-again shell. Finally,
SyFi rely on the C++ library GiNaC.

Configuration and Installation As mention earlier, the configuration, build
and installation scripts are all made by the Autoconf and Automake tools.
Hence, to configure, build and install the package, simply execute the com-
mands,

bash >./configure
bash >make
bash >make install

If this does not work, it is most likely because GiNaC is not properly installed
on your system. Check if you have the script ginac-config in your path.

Reporting Bugs/Submitting Patches At present, there are no mailing-
lists associated with this package. Therefore, all bug reports etc. should be

directed directly to kent-and@simula.no.
In case, you want to contribute code, please create a patch with diff,

bash >diff -u --new-file --recursive SyFi SyFi-mod > SyFi-<name>-<date>.patch

Here <name> should be replaced with your name and <date> should be replaced
with the current date.

3 A Finite Element

3.1 Basic Concepts

To keep the abstractions clear we briefly review the general definition of a finite
element, see e.g., Ciarlet [?].

Definition 3.1 (A Finite Element) A finite element consists of,
1. A polygonal domain, T .
2. A polynomial space, V.

3. A set of degrees of freedom (linear forms), L; : V — R, fori=1,...,n,
where n = dim(V'), that determines V' uniquely.

Furthermore, to determine a basis in V, {v;}?;, we form the linear system of
equations,
Li(vj) = 64, (1)

and solve it.

Example 3.1 (Linear Lagrangian element on the reference triangle) Let
T be the unit triangle with vertices (0,0), (1,0), and (0,1). The polynomial space

V' consists of linear polynomials, i.e., polynomials on the form a+bx + cy. The
degrees of freedom for this element are simply the pointvalues at the vertices,
zi, Li(vj) = vj(x;). The degrees of freedom and (1) determined a, b, and c for
each basis function. For instance vy, which is on the form a; + bix + c1y, is
determined by,

Li(vn) = v (x;) = da1,

or written out as a system of linear equations,

1 0 0 aj 1
1 1 0 by =10
1 0 1 C1 0

Figure 1: A line.

(5517 Y1, 21)

(:L‘Oa Yo, ZO)

Hence,
vp=1—z—y.

The functions vo and vs can be determined similarly.

In the next sections we will go detailed through polygons, polynomial spaces
and degrees of freedom, and the corresponding software components.

3.1.1 Polygons

In the finite element method we need the concept of simple polygons to define
integration, polynomial spaces etc. The basic polygons are lines, triangles, and
tetrahedra (rectangles and boxes have not been implemented yet). These basic
components will be briefly described in this section.

Line A line segment, L, between two points xo = [0, yo, 20] and x; = [z1, y1, 21]
in 3D is defined as, see also Figure 3.1.1,

x zo +at, (2)
z = zy+ct, (4)
t e (0,1, ()

where a = x1 — 29, b =y1 — Yo, and ¢ = 21 — 2.
Integration of a function f(z,y, z) along the line segment L is performed by
substitution,

/L f(@,y,2) de dy dz = / F(x(t), y(t), () D dt, (6)

where D = va? + b2 + 2.

Software Component: Line The class Line implements a general line. It is
defined as follows (see Polygon.h):

class Line : public Polygon {

ex a_;
ex b_;
public:
Line() {}
Line(ex x0, ex x1, string subscript = ""); // x0O_ and x1_ are points
“Line O{}

virtual int no_vertices();
virtual ex vertex(int i);
virtual ex repr(ex t);
virtual string str();
virtual ex integrate(ex f);

Most of the functions in this class are self-explanatory. However, the function
repr deserves special attention. The function repr returns the mathematical
definition of a line. To be precise, this function returns a list of expressions
(1st), where the items are the items in (2)-(5) (see also the example below).
The basic usage of a line is as follows (see line_ex1.cpp),

ex p0
ex pl

1st(0.0,0.0,0.0);
1st(1.0,1.0,1.0);

Line line(p0,pl);

// show usage of repr

symbol t("t");

ex l_repr = line.repr(t);

cout <<"l.repr "<<1_repr<<endl;
EQUAL_OR_DIE(1_repr, "{x==t,y==t,z==t,{t,0,1}}");

for (int i=0; i< l_repr.nops(); i++) {
cout <<"1_repr.op(" <<i<<"): "<<1_repr.op(i)<<endl;

// compute the integral of a function along the line
ex £ = x*xx + yxy*xy + z;

ex intf = line.integrate(f);

cout <<"intf "<<intf<<endl;

EQUAL_OR_DIE(intf, "13/12");

The function EQUAL_ORDIE compares the string representation of the expression
with an expected expression represented as a character array. If the string rep-
resentation of the expression and the character array are not equal the program
dies, and this tells the programmer that the test faulted. The reason for this is
that our test examples also serve as regression tests for the package.

Triangle A triangle is defined in terms of three points xq, X1, and x2. Asso-
ciated with each triangle are three lines; the first line is between the points xq
and x1, the second line is between the points xg and x5, and the third line is
between the points x; and x5. This is shown in Figure 2. The triangle can be

Figure 2: Triangle

(2, Yo, 22)
S
t
CE07 Yo, 20)
(1, Y1, 21)
represented as
T = xo+ar+ bs, (7)
y = yo+or+ds, (8)
z = zg+er+fs, 9)
s € [0,1—r], (10)
roe [0,1], (11)

where (a, ¢, €) = (z1—20,y1— Yo, 21— 20) and (b, d, f) = (z2— 20, y2— Yo, 22— 20)-
Integration is performed by substitution,

1 1—r
/f(x,y,z)da?dydz:/ / f(z,y,z) Ddsdr,
T o Jo

where D = \/(cf — de)? + (af — be)? + (ad — be)2.

Software Component: Triangle The class Triangle implements a general
triangle. It is defined as follows (see Polygon.h):

class Triangle : public Polygon {
public:
Triangle(ex x0, ex x1, ex x1, string subscript = "");
Triangle() {}
“Triangle(){}

virtual int no_vertices();
virtual ex vertex(int i);
virtual Line line(int i);
virtual ex repr();

virtual string str();
virtual ex integrate(ex f);

};

Here the function repr returns a list with the items (7)-(11). In addition to the
functions also found in Line, Triangle has a function line(int i), returning a
line.

The basic usage of a triangle is as follows (see triangle_ex1.cpp),

ex p0 = 1st(0.0,0.0,1.0);
ex pl = 1st(1.0,0.0,1.0);
ex p2 = 1st(0.0,1.0,1.0);

Triangle triangle(pO,pl,p2);

ex repr = triangle.repr();
cout <<"t.repr "<<repr<<endl;
EQUAL_OR_DIE(repr, "{x==r,y==s,z==1.0,{r,0,1},{s,0,1-r}}");

ex f = xxy*z;

ex intf = triangle.integrate(f);
cout <<"intf "<<intf<<endl;
EQUAL_OR_DIE(intf, "1/24");

Tetrahedron A tetrahedron is defined by four points xg, X1, X2, and x3.
Associated with a tetrahedron are four triangles and six lines. The convention
used so far is that

the first line connects x¢ and x1,

the second line connects xg and xo,

e the third line connects x¢ and x3,

the fourth line connects x; and xo,

the fifth line connects x; and x3,
e the sixth line connects x5 and x3.

The ¢’th triangle has the vertices X;o4, X(i41)%4, and X(;42y%4, where % 1is the
modulus operator. The tetrahedron can be represented as, see also Figure 3,

x xo + ar + bs +ct, (12)
Yy = yo+dr+es+ ft, (13)
z = zog+gr+hs+kt, (14)
t € [0,1—r—s], (15)
s € [0,1—r1], (16)
r € [0,1], (17)

Figure 3: A tetrahedron.

(5527 Ya, 22)

(56’37 Y3, 23)

CE07 Yo, zO) T

($1, Y1, 21)

where (a,d, g) = (£1 — 20, Y1 — Y0, 21 — 20), (b, e, h) = (x2 — 20, Y2 — Yo, 22 — 20),
and (c, f,k) = (3 — 2o, Y3 — Yo, 23 — 20)-
As earlier, integration is performed with substitution,

/ flz,y,z)dxdydz =
T

1 1—r 1—r—s
L[fatsousn. st Dadsr
0 0 0

where D is the determinant of,

Q Q.2
> o o
T O

Software Component: Tetrahedron The class Tetrahedron implements a
general tetrahedron. It is defined as follows (see Polygon.h):

class Tetrahedron : public Polygon {

public:

Tetrahedron(string subscript) {3}

Tetrahedron(ex x0, ex x1, ex x1, ex x2, string subscript = "y,
~“Tetrahedron(){}

virtual int no_vertices();

virtual ex vertex(int i);

virtual Line line(int i);

virtual Triangle triangle(int i);
virtual ex repr();

virtual string str();

virtual ex integrate(ex f);

};

The function repr returns a list representing (12) —(17). In addition to the usual
functions it has the functions 1ine(int i) and triangle(int i) for returning the
¢’th line and the ¢’th triangle, respectively.

Its basic usage is as follows (see tetrahedron_ex1.cpp),

ex p0 = 1st(0.0,0.0,0.0);
ex pl = 1st(1.0,0.0,0.0);
ex p2 = 1st(0.0,1.0,0.0);
ex p3 = 1st(0.0,0.0,1.0);

Tetrahedron tetrahedron(p0O,pl,p2,p3);

ex repr = tetrahedron.repr();
cout <<"t.repr "<<repr<<endl;
EQUAL_OR_DIE(repr, "{x==r,y==s,z==t,{r,0,1},{s,0,1-r},{t,0,1-s-r}}");

ex f = x¥y*z;
ex intf = tetrahedron.integrate(f);
EQUAL_OR_DIE(intf, "1/720");

3.2 Polynomial Spaces

The space of polynomials of degree less or equal to n, P”, plays a fundamental
role in the construction of finite elements. There are many ways to represent
this polynomial space. So far we have used the perhaps visually nicest rep-
resentation, having it spanned by the basis (in 1D) {1,z,22,...,2"}. This
representation is not suitable for polynomials of high degree?. However, we
have chosen this basis in our initial version, because of its, as mentioned, nice

representation. We will add the Bernstein basis in the next release.

In 1D, P" is spanned by functions on the form
Uzao—i—alx—l—...anx":Zaixi (18)
i=0

In 2D on triangles, P™ is spanned by functions on the form:

1+j<=n o
V= Z az;x'y’ (19)

i,j=0

2In that case, one should use e.g., the Bernstein polynomials or the Legendre polynomials.
These polynomials have not yet been implemented.

10

In 2D on quadrilaterals, P™ is spanned by functions on the form:

1,j<=n
v= Z aijz'y’ (20)

i,j=0
The corresponding polynomial spaces in 3D are completely analogous.

Software Component: Polynomial Space The following functions gener-
ate symbolic expressions for the above polynomial spaces (18), (19), and (20),
their corresponding polynomial spaces in 3D and their vector counterparts.

// generates a polynomial of any order on a line, a triangle, or a tetrahedron
ex pol(int order, int nsd, const string a);

// generates a vector polynomial of any order on a line, a triangle or a tetrahedron
1st polv(int order, int nsd, const string a);

// generates a polynomial of any order on a square or a box
ex polb(int order, int nsd, const string a);

// generates a vector polynomial of any order on a square or a box
1st polbv(int order, int nsd, const string a);

These abstract polynomials (or polynomial spaces) can be easily manipulated,
e.g., (see also pol.cpp),

int order
int nsd

2;
2;

ex p = pol(order,nsd, "a");
cout <<"polynomial p = "<<p<<endl;
EQUAL_OR_DIE(p, "y 2*ab+x"~2*a3+a2*y+y*x*ad+aO+al*x");

ex dpdx = diff(p,x);
cout <<"dpdx = "<<dpdx<<endl;
EQUAL_OR_DIE(dpdx, "y*ad+al+2*x*a3");

Triangle triangle(1lst(0,0), 1st(1,0), 1st(0,1));

ex intp = triangle.integrate(p);

cout <<"integral of p over reference triangle = "<<intp<<endl;
EQUAL_OR_DIE(intp, "1/6%a2+1/6*al+1/12*ab+1/2%a0+1/24*ad+1/12%a3");

3.3 A Finite Element

Before we start describing how to construct a finite element based on the Defi-
nition 3.1, we will concentrate on the usage of a finite element. A finite element
only has two interesting components, the basis functions {N;} and the corre-
sponding degrees of freedom {L;}. The basis function (and its derivatives) is
used to compute the element matrices and element vectors, while the degrees
of freedom are used to define the mapping between the element matrices and
element vectors to the global matrix and global vector. As we see in the fol-
lowing, the observation that only these two components are needed leads to a
minimalistic definition of a finite element in our software tools.

11

Software Component: Finite Element Due to the powerful expression
class in GiNaC, ex, our base class for the finite elements can be very small.
Both the basis function N; and the corresponding degree of freedom L; can be
well represented as an ex. Hence, the following definition of a finite element is
suitable,

class FE {
public:
FEO {}
“FEO {}

virtual void set(Polygon& p);
virtual ex N(int i);

virtual ex dof(int i);
virtual int nbf();

};
The usage of a finite element is as follows (see fe_ex1.cpp),
ex Ni;
ex gradNi;
ex dofi;
for (int i=1; i<= fe.nbf() ; i++) {
Ni = fe.N(i);

gradNi = grad(Ni);

dofi = fe.dof(i);

cout <<"The basis function, N("<<i<<")="<<Ni<<endl;

cout <<"The gradient of N("<<i<<")="<<gradNi<<endl;

cout <<"The corresponding dof, L("<<i<<")="<<dofi<<endl;

The computation of the element matrix in a Poisson problem is as follows (see
fe_ex2.cpp%

Triangle T(1st(0,0), 1st(1,0), 1st(0,1), "t");
int order = 2;

std: :map<std::pair<int,int>, ex> A;
std::pair<int,int> index;
LagrangeFE fe;
fe.set (order);
fe.set(T);
fe.compute_basis_functions();
for (int i=1; i<= fe.nbf() ; i++) {
index.first = i;
for (int j=1; j<= fe.nbf() ; j++) {
index.second = j;
ex nabla = inner(grad(fe.N(i)), grad(fe.N(j)));
ex Aij = T.integrate(nabla);
Alindex] = Aij;

[

The Construction of a Finite Element Finally, we will describe the con-
struction of a Lagrangian element on a 2D triangle (the implementation of more
general Lagrangian elements can be found in LagrangeFE). As we saw in Section
3.2, the polynomial space P™ in 2D is on the form

i+j<=n

v = g ai; 'y’

4,7=0

12

Hence, to determine the basis functions {v*} we simply represented them in

abstract form,
i+j<=n

ki j
v = E a;; 'y’

4,5=0
Then the coefficients {afj} are determined by the (n + 1)(n + 2)/2 degrees of
freedom that are the nodal values at the the points x;, i.e.,

Li(’ljk) = Uk (Xl)

Hence, we need a set of (n+1)(n+2)/2 nodal points to determine the coefficients
{afj} for each basis function. We have chosen to use the Bezier ordinates. Then
it is simply a matter of solving the linear system

L;(v) = vg(x:) = i,

for each basis function vg. This can be done as follows, (see fe3_ex.cpp),

Triangle t(1st(0,0), 1st(1,0), 1st(0,1));
int order = 2;

ex polynom;

1st variables;

// the polynomial spaces on the form:
a0 + al*x + a2*y + al3*x"2 + ad*x*y ...
polynom = pol(order, 2, "b");
// the variables a0,al,a2 ..
variables = coeffs(polynom) ;

ex Nj;
// The bezier ordinates in which the basis function should be either 0 or 1
1st points = bezier_ordinates(t,order);

// Loop over all basis functions N_j and all points xi.
// Each basis function N_j is determined by a set of linear equations:
// N_j(x_i) = dirac(i,j)
// This system of equations is then solved by lsolve
for (int j=1; j <= points.nops(); j++) {
1st equationms;
int i=0;
for (int i=1; i<= points.nops() ; i++) {
// The point x_i
ex point = points.op(i-1);
// The equation N_j(x_i) = dirac(i,j)
ex eq = polynom == dirac(i,j);
// The equation is appended to the list of equations
equations.append(eq.subs(lst(x == point.op(0) , y == point.op(1))));

// We solve the linear system
ex subs = lsolve(equations, variables);
// Substitute to get the N_j
Nj = polynom.subs(subs);
cout <<"Nj "<<Nj<<endl;
}

In this example the degrees of freedom are very simple. It is only a matter
of evaluating the function vy in the point x; (which in GiNaC is performed
by substitution). Later we will see that more advanced degrees of freedom are
readily available since we have stored the degrees of freedom as a set of exes.

13

3.4 Degrees of Freedom

As we have seen earlier, for each element e, we have a local set of degrees
of freedom {L$}, which in general are linear forms on the polynomial space.
Although, degrees of freedom and linear forms are quite general concepts, the
reader not familiar with this general definition can think of them as nodal values
at vertices, i.e.,

L;(v) = v(x;).

The most important thing with the degrees of freedom is that they provide

a mapping from the local degree of freedom, L§, on a given element, e, to the

global degree of freedom, L;, which in turn provides the mapping for element

matrices and vectors to the global matrix and vector. Hence, we have the
following mapping,

(e,i) — L§ — L; — j. (21)

Here e, 4, and j are integers, while LS and L; are degrees of freedom (or linear
forms). Additionally, given a global degree of freedom we have a mapping to
the local degrees of freedom,

J = Lj = {Liey teen) = {(€i(€)}een()- (22)

Here E(j) is the set of elements sharing the degree of freedom L;.

Software Component: Degrees of Freedom A degree of freedom, local
or global, is well represented as an ex (in fact ex is more general than a linear
form). Hence, to implement proper tools for degrees of freedom, we only need
to provide the mappings (21) and (22). The class Dof provides these mappings,

class Dof {
protected:
int counter;
// the structures loc2dof, dof2index, and doc2loc are completely dynamic
// they are all initialized and updated by insert_dof(int e, int d, ex dof)

// (int e, int i) -> ex Li

map<pair<int,int>, ex> loc2dof;

// (ex Lj) -> int j

map<ex,int,ex_is_less> dof2index;

// (int j) -> ex Lj

map<int,ex> index2dof;

// (ex Lj) -> vector< pair<el, il>, .. pair<en, in> >

map <ex, vector<pair<int,int> >,ex_is_less > dof2loc;

public:
Dof() { counter = 0; }
“Dof () {}

int insert_dof(int e, int j, ex Lj); // to update the internal structures

// helper functions when the dofs have been set (in Dof)
// These do not modify the internal structure

int glob_dof(int e, int j);

int glob_dof(ex Lj);

ex glob_dof(int j);

int size();

vector<pair<int, int> > glob2loc(int j);

14

Here, the function int insert_dof(int e, int i, ex Li) creates the various map-
pings between the local dof L;, in element e, and the global dof L;. This is the

only function for initializing the mappings. After the mappings have been ini-

tialized, they can be used as follows,

e int glob_dof(int e, int i) is the mapping (e, i) — j

e int glob_dof(ex Lj) is the mapping L; — j

® ex glob_dof (int j) is the mapping j — L;

e vector<pair<int, int> > glob2loc(int j) is the mapping j — {(e,i(e))}.

The basic usage of Dof is (from dof_ex.cpp)
Dof dof;

Triangle t1(1st(0.0,0.0), 1st(1.0,0.0), 1st(0.0,1.0));
Triangle t2(1st(1,1), 1st(1,0), 1st(0,1));

// Create a finite element and corresponding

// degrees of freedom on the first triangle

int order = 2;

LagrangeFE fe;

fe.set (order);

fe.set(tl);

fe.compute_basis_functions();

for (int i=1; i<= fe.nbf() ; i++) {
cout <<"fe.dof ("<<i<<")= "<<fe.dof(i)<<endl;
// insert local dof in global set of dofs
dof.insert_dof(1,i, fe.dof(i));

// Create a finite element and corresponding

// degrees of freedom on the second triangle

fe.set(t2);

fe.compute_basis_functions();

for (int i=1; i<= fe.nbf() ; i++) {
cout <<"fe.dof ("<<i<<")= "<<fe.dof(i)<<endl;
// insert local dof in global set of dofs
dof.insert_dof(2,i, fe.dof(i));

}

// Print out the global degrees of freedom an their
// corresponding local degrees of freedom
vector<pair<int,int> > vec;
pair<int,int> index;
ex exdof;
for (int i=1; i<= dof.size(); i++) {
exdof = dof.glob_dof(i);
vec = dof.glob2loc(i);
cout <<"global dof " <<i<<" dof "<<exdof<<endl;
for (int j=0; j<vec.size(); j++) {
index = vecl[j];
cout <<" element "<<index.first<<" local dof "<<index.second<<endl;

In the previous example, the reader that also runs the companion code will
notice that the degrees of freedom in LagrangeFE are not linear forms on poly-
nomial spaces, i.e.,

Lz(’l)) = U(Xi).

15

They are instead represented as points, x;, which is the usual way to represent
these degrees of freedom in finite element software (because of their obvious
simplicity compared to linear forms on polynomial spaces). Hence, the degrees
of freedom in LagrangeFE are actually implemented in the standard fashion.
However, the tools we have described are far more general than conventional
finite element codes. Still the tools are equally simple to use, due to the powerful
expression class ex in GiNaC.

Our next example concerns degrees of freedom which are line integrals over
the edges of triangles. Let T be a triangle with the edges e;. The degree of

freedom is then simply,
L;(v) = / vds.

7

As our next example shows, such degrees of freedom can be implemented equally
easy as the point values shown in the previous example (see dof_ex2.cpp):

Dof dof;

// create two triangles
Triangle t1(1st(0.0,0.0), 1st(1.0,0.0), 1st(0.0,1.0));
Triangle t2(1st(1,1), 1st(1,0), 1st(0,1));

// create the polynomial space
ex Nj = pol(1,2,"a");

cout <<"Nj " <<Nj<<endl;

Line line;

ex dofi;

// dofs on first triangle
for (int i=1; i<= 3; i++) {
line = ti.line(i); // pick out the i’th line
dofi = line.integrate(Nj); // create the dof which is a line integral
dof.insert_dof(1,i, dofi); // insert local dof in global set of dofs
}

// dofs on second triangle
for (int i=1; i<= 3; i++) {
line = t2.1line(i); // pick out the i’th line
dofi = line.integrate(Nj); // create the dof which is a line integral
dof.insert_dof(2,i, dofi); // insert local dof in global set of dofs
}

References

[1] Philippe G. Ciarlet. The Finite Element Method for Elliptic Problems.
STAM, 2002.

16

