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About this manual

Intended audience

This manual is written both for the beginning and the advanced user. There
is also some useful information for developers. More advanced topics are
treated at the end of the manual or in the appendix.

Typographic conventions

• Code is written in monospace (typewriter) like this.

• Commands that should be entered in a Unix shell are displayed as
follows:

# ./configure

# make

Commands are written in the dialect of the bash shell. For other shells,
such as tcsh, appropriate translations may be needed.
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Enumeration and list indices

Throughout this manual, elements xi of sets {xi} of size n are enumerated
from i = 0 to i = n − 1. Derivatives in R

n are enumerated similarly:
∂

∂x0

, ∂
∂x1

, . . . , ∂
∂xn−1

.

Contact

Comments, corrections and contributions to this manual are most welcome
and should be sent to

ffc-dev@fenics.org
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Chapter 1

Introduction

This chapter has not yet been written. In the meantime, refer to [5, 6] where
the algorithms that FFC is based on are described in detail.
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Chapter 2

Quickstart

This chapter demonstrates how to get started with FFC, including down-
loading and installing the latest version of FFC, and compiling Poisson’s
equation. These topics are discussed in more detail elsewhere in this man-
ual. In particular, see Appendix C for detailed installation instructions and
Chapter 5 for a detailed discussion of the form language.

2.1 Downloading and installing FFC

The latest version of FFC can be found on the FEniCS web page:

http://www.fenics.org/

The following commands illustrate the installation process, assuming that
you have downloaded release x.y.z of FFC:

# tar zxfv ffc-x.y.z.tar.gz

# cd ffc-x.y.z

# sudo python setup.py install

13
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Make sure that you download the latest release. You may also need to
install the Python packages FIAT and NumPy. (See Appendix C for detailed
instructions.)

2.2 Compiling Poisson’s equation with FFC

The discrete variational (finite element) formulation of Poisson’s equation,
−∆u = f , reads: Find uh ∈ Vh such that

a(v, uh) = L(v) ∀v ∈ V̂h, (2.1)

with (V̂h, Vh) a pair of suitable function spaces (the test and trial spaces).
The bilinear form a : V̂h × Vh → R is given by

a(v, uh) =

∫
Ω

∇v · ∇uh dx (2.2)

and the linear form L : V̂h → R is given by

L(v) =

∫
Ω

v f dx. (2.3)

To compile the pair of forms (a, L) into code that can called to assemble the
linear system Ax = b corresponding to the variational problem (2.1) for a
pair of discrete function spaces, specify the forms in a text file with extension
.form, e.g. Poisson.form, as follows:

element = FiniteElement("Lagrange", "triangle", 1)

v = TestFunction(element)

u = TrialFunction(element)

f = Function(element)

a = dot(grad(v), grad(u))*dx

L = v*f*dx

14
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The example is given for piecewise linear finite elements in two dimensions,
but other choices are available, including arbitrary order Lagrange elements
in two and three dimensions.

To compile the pair of forms implemented in the file Poisson.form, call the
compiler on the command-line as follows:

# ffc Poisson.form

This will generate the file Poisson.h containing low level C++ code in the
UFC (Unified Form-assembly Code) format [2, 3]. The generated code can
be used by any UFC-based assembler such as DOLFIN [4] to assemble the
discrete representations (the matrix A and vector b) of the bilinear form a
and linear form L of Poisson’s equation.

Note that by adding the flag -l dolfin, additional DOLFIN-specific wrap-
pers are added to the generated code which simplifies the use of the generated
code with DOLFIN. In particular, the handling of forms depending on coef-
ficients like f in Poisson’s equation is simplified.

For further help on the ffc command and available command-line options,
refer to the FFC man page:

# man ffc

15





Chapter 3

Command-line interface

The command-line interface of FFC is documented by the FFC man page:

# man ffc

A copy of this documentation is included below for convenience.

NAME

FFC - the FEniCS Form Compiler

SYNOPSIS

ffc [-h] [-v] [-d debuglevel] [-s] [-l language] [-r representation]

[-f option] [-O] ... input.form ...

DESCRIPTION

Compile multilinear forms into efficient low-level code.

The FEniCS Form Compiler FFC accepts as input one or more files, each

specifying one or more multilinear forms, and compiles the given forms

into efficent low-level code for automatic assembly of the tensors rep-

resenting the multilinear forms. In particular, FFC compiles a pair of

bilinear and linear forms defining a variational problem into code that

can be used to efficiently assemble the corresponding linear system.

By default, FFC generates code according to the UFC specification ver-

sion 1.0 (Unified Form-assembly Code, see http://www.fenics.org/) but

this can be controlled by specifying a different output language

17
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(option -l). It is also possible to add new output languages to FFC.

For a full description of FFC, including a specification of the form

language used to define the multilinear forms, see the FFC user manual

available on the FEniCS web page: http://www.fenics.org/

OPTIONS

-h, --help

Display help text and exit.

-v, --version

Display version number and exit.

-d debuglevel, --debug debuglevel

Specify debug level (default is 0).

-s, --silent

Silent mode, no output is printed (same as --debuglevel -1).

-l language, --language language

Specify output language, one of ’ufc’ (default) or ’dolfin’ (UFC

with a small layer of DOLFIN-specific bindings).

-r representation, --representation representation

Specify representation for precomputation and code generation,

one of ’tensor’ (default) or ’quadrature’ (experimental).

-f option

Specify code generation options. The list of options available

depends on the specified language (format). Current options

include -fprecision=n, -fblas and -fno-foo, described in detail

below.

-f precision=n

Set the number of significant digits to n in the generated code.

The default value of n is 15.

-f blas

Generate code that uses BLAS to compute tensor products. This

option is currently ignored, but can be used to reduce the code

size when the BLAS option is (re-)implemented in future ver-

sions.

-f no-foo

Don’t generate code for UFC function with name ’foo’. Typical

options include -fno-evaluate_basis and -fno-evalu-

ate_basis_derivatives to reduce the size of the generated code

when these functions are not needed.

-O, --optimize

Generate optimized code using FErari optimizations. This option

is currently ignored, but can be used to reduce the operation

count for assembly (run-time for the generated code). This

option requires FErari and should be used with caution since it

may be very costly (at compile-time) for other than simple

forms.

18
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BUGS

Send comments, questions, bug reports etc. to ffc-dev@fenics.org.

AUTHOR

Anders Logg (logg@simula.no)

FFC(1)
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Chapter 4

Python interface

FFC provides a Python interface in the form of a standard Python module.
The following example demonstrates how to define and compile the varia-
tional problem for Poisson’s equation in a Python script:

from ffc import *

element = FiniteElement("Lagrange", "triangle", 1)

v = TestFunction(element)

u = TrialFunction(element)

f = Function(element)

a = dot(grad(v), grad(u))*dx

L = v*f*dx

compile([a, L], "Poisson")

At the basic level, the only difference between the command-line interface
and the Python interface is that one must add the import statement of the
FFC module and that the function compile must be called when using the
Python interface.

21
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4.1 The compile function

The compile function expects a form (see Section 5) or a list of forms as its
first argument. It also accepts up to four additional optional arguments:

compile(forms, prefix, representation, language, options)

The prefix argument can be used to control the prefix of the file containing
the generated code, which we in the above example set to "Poisson". The
suffix ".h" will be added automatically.

The representation argument can be used to control the form represen-
tation used for precomputation and code generation. The default value is
"tensor", which indicates that the code should be generated based on a
tensor representation of the multilinear form as described in [5, 6]. Alterna-
tively, "quadrature" may be used to specify that code should be generated
based on direct quadrature at run-time (experimental).

The language option can be used to control the output language for the
generated code. The default value is "ufc", which indicates that code should
be generated in the UFC format [2, 3]. Alternatively, "dolfin" may be used
to generate code according to the UFC format with a small set of additional
DOLFIN-specific wrappers.

Finally, the compile function accepts a dictionary of special code generation
options. The default values for these options may be accessed through the
variable FFC OPTIONS available in FFC.

4.2 Compiling finite elements

The compile function may also be used to compile finite elements directly
(without associated forms). The following example demonstrates how to
generate code for a fifth degree Lagrange finite element on tetrahedra:

22
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from ffc import *

element = FiniteElement("Lagrange", "tetrahedron", 5)

compile(element, "P5")

23





Chapter 5

Form language

FFC uses a flexible and extensible language to define and process multilinear
forms. In this chapter, we discuss the details of this form language. In the
next section, we present a number of examples to illustrate the use of the
form language in applications.

5.1 Overview

FFC compiles a given multilinear form

a : V 1
h × V 2

h × · · · × V r
h → R (5.1)

into code that can be used to compute the corresponding tensor

Ai = a(φ1
i1
, φ2

i2
, . . . , φr

ir
). (5.2)

In the form language, a multilinear form is defined by first specifying the set
of function spaces, V 1

h , V 2
h , . . . , V r

h , and then expressing the multilinear form
in terms of the basis functions of these function spaces.

A function space is defined in the form language through a FiniteElement,
and a corresponding basis function is represented as a BasisFunction. The

25
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following code defines a pair of basis functions v and u for a first-order La-
grange finite element on triangles:

element = FiniteElement("Lagrange", "triangle", 1)

v = BasisFunction(element)

u = BasisFunction(element)

The two basis functions can now be used to define a bilinear form:

a = v*D(u, 0)*dx

corresponding to the mathematical notation

a(v, u) =

∫
Ω

v
∂u

∂x0

dx. (5.3)

Note that the order of the argument list of the multilinear form is deter-
mined by the order in which basis functions are declared, not by the order
in which they appear in the form. Thus, both a = v*D(u, 0)*dx and a =

D(u, 0)*v*dx define the same multilinear form.

The arity (number of arguments) of a multilinear form is determined by the
number of basis functions appearing in the definition of the form. Thus, a
= v*u*dx defines a bilinear form, namely a(v, u) =

∫
Ω

v u dx, whereas L =

v*dx defines a linear form, namely L(v) =
∫
Ω

v dx.

In the case of a bilinear form, the first of the two basis functions is referred
to as the test function and the second is referred to as the trial function.
One may optionally use the keywords TestFunction and TrialFunction to
specify the test and trial functions. This has the advantage that the order
of specification of the two functions does not matter; the test function will
always be the first argument of a bilinear form and correspond to a row in the
corresponding assembled matrix. Thus, the example above may optionally
be specified as follows:

26
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element = FiniteElement("Lagrange", "triangle", 1)

v = TestFunction(element)

u = TrialFunction(element)

Not every expression is a valid multilinear form. The following list explains
some of the basic rules that must be obeyed in the definition of a form:

• A form must be linear in each of its arguments; otherwise it is not a
multilinear form. Thus, a = v*v*u*dx is not a valid form, since it is
quadratic in v.

• The value of a form must be a scalar. Thus, if v is a vector-valued
basis function (see below), then L = v*dx is not a valid form, since the
value of the form is not a scalar.

• The integrand of a form must be integrated exactly once. Thus, neither
a = v*u nor a = v*u*dx*dx are valid forms.

5.2 The form language as a Python extension

The FFC form language is built on top of Python. This is true both when
calling FFC as a compiler from the command-line or when calling the FFC
compiler from within a Python program. Through the addition of a collection
of basic data types and operators, FFC allows a form to be specified in a
language that is close to the mathematical notation. Since the form language
is built on top of Python, any Python code is valid in the definition of a form
(but not all Python code defines a multilinear form). In particular, comments
(lines starting with #) and functions (keyword def, see Section 5.11 below)
are allowed in the definition of a form.

27



FFC User Manual Anders Logg

5.3 Basic data types

5.3.1 FiniteElement

The data type FiniteElement represents a finite element on a triangle or
tetrahedron. A FiniteElement is declared by specifying the finite element
family, the underlying shape and the polynomial degree:

element = FiniteElement(family, shape, degree)

The argument family is a string and possible values include:

• "Lagrange" or "CG", representing standard scalar Lagrange finite ele-
ments (continuous piecewise polynomial functions);

• "Discontinuous Lagrange" or "CG", representing scalar discontinu-
ous Lagrange finite elements (discontinuous piecewise polynomial func-
tions);

• "Crouzeix-Raviart" or "CR", representing scalar Crouzeix–Raviart
elements;

• "Brezzi-Douglas-Marini" or "BDM", representing vector-valued Brezzi–
Douglas–Marini H(div) elements;

• "Raviart-Thomas" or "RT", representing vector-valued Raviart–Thomas
H(div) elements.

The argument shape is a string and possible values include:

• "triangle", representing a triangle in R
2;

• "tetrahedron", representing a tetrahedron in R
3.

28
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The argument degree is an integer specifying the polynomial degree of the
finite element. Note that the minimal degree for Lagrange finite elements is
one, whereas the minimal degree for discontinuous Lagrange finite elements
is zero.

Note that more than one FiniteElement can be declared and used in the
definition of a form. The following example declares two elements, one linear
and one quadratic Lagrange finite element:

P1 = FiniteElement("Lagrange", "tetrahedron", 1)

P2 = FiniteElement("Lagrange", "tetrahedron", 2)

5.3.2 VectorElement

The data type VectorElement represents a vector-valued element. Vector-
valued elements may be created by repeating any finite element (scalar,
vector-valued or mixed) a given number of times. The following code demon-
strates how to create a vector-valued cubic Lagrange element on a triangle:

element = VectorElement("Lagrange", "triangle", 3)

This will create a vector-valued Lagrange element with two components. If
the number of components is not specified, it will automatically be chosen
to be the equal to the cell dimension. Optionally, one may also specify the
number of vector components directly:

element = VectorElement("Lagrange", "triangle", 3, 5)

Note that vector-valued elements may be created from any given element
type. Thus, one may create a (nested) vector-valued element with four com-
ponents where each pair of components is a first degree BDM element as
follows:

29
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element = VectorElement("BDM", "triangle", 1, 2)

5.3.3 MixedElement

The data type MixedElement represents a mixed finite element on a triangle
or tetrahedron. The function space of a mixed finite element is defined as the
direct sum of the function spaces of a given list of elements. A MixedElement

is declared by specifying a list of FiniteElements:

mixed_element = FiniteElement([e0, e1, ...])

Alternatively, a MixedElement can be created as the sum of a pair1 of
FiniteElements. The following example illustrates how to create a Taylor–
Hood element (quadratic velocity and linear pressure):

P2 = VectorElement("Lagrange", "triangle", 2)

P1 = FiniteElement("Lagrange", "triangle", 1)

TH = P2 + P1

Elements may be mixed at arbitrary depth, so mixed elements can be used as
building blocks for creating new mixed elements. In fact, a VectorElement

just provides a simple means to create mixed elements. Thus, a Taylor–Hood
element may also be created as follows:

P2 = FiniteElement("Lagrange", "triangle", 2)

P1 = FiniteElement("Lagrange", "triangle", 1)

TH = (P2 + P2) + P1

1Note that summing more than two elements will create a nested mixed element. For
example e = e0 + e1 + e2 will correspond to e = MixedElement([MixedElement([e0,

e1]), e2]).
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5.3.4 BasisFunction

The data type BasisFunction represents a basis function on a given finite
element. A BasisFunction must be created for a previously declared finite
element (simple or mixed):

v = BasisFunction(element)

Note that more than one BasisFunction can be declared for the same
FiniteElement. Basis functions are associated with the arguments of a
multilinear form in the order of declaration.

For a MixedElement, the function BasisFunctions can be used to construct
tuples of BasisFunctions, as illustrated here for a mixed Taylor–Hood ele-
ment:

(v, q) = BasisFunctions(TH)

(u, p) = BasisFunctions(TH)

5.3.5 TestFunction and TrialFunction

The data types TestFunction and TrialFunction are special instances of
BasisFunction with the property that a TestFunction will always be the
first argument in a form and TrialFunction will always be the second ar-
gument in a form (order of declaration does not matter).

For a MixedElement, the functions TestFunctions and TrialFunctions

can be used to construct tuples of TestFunctions and TrialFunctions, as
illustrated here for a mixed Taylor–Hood element:

(v, q) = TestFunctions(TH)

(u, p) = TrialFunctions(TH)
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5.3.6 Function

The data type Function represents a function belonging to a given finite
element space, that is, a linear combination of basis functions of the fi-
nite element space. A Function must be declared for a previously declared
FiniteElement:

f = Function(element)

Note that more than one function can be declared for the same FiniteEle-

ment. The following example declares two BasisFunctions and two Functions
for the same FiniteElement:

v = BasisFunction(element)

u = BasisFunction(element)

f = Function(element)

g = Function(element)

Function is used to represent user-defined functions, including right-hand
sides, variable coefficients and stabilization terms. FFC treats each Function

as a linear combination of basis functions with unknown coefficients. It is
the responsibility of the user or the system for which the form is compiled to
supply the values of the coefficients at run-time. In the case of DOLFIN, the
coefficients are automatically computed from a given user-defined function
during the assembly of a form. In the notation of the UFC interface [2, 3],
Functions are referred to as coefficients.

Note that the order in which Functions are declared is important. The
code generated by FFC accepts as arguments a list of functions that should
correspond to the Functions appearing in the form in the order they have
been declared.

For a MixedElement, the function Functions can be used to construct tuples
of Functions, as illustrated here for a mixed Taylor–Hood element:
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(f, g) = Functions(TH)

5.3.7 Constant

The data type Constant represents a constant scalar value that is unknown
at compile-time. A Constant is declared for a given cell shape ("triangle"
or "tetrahedron"):

c = Constant(shape)

Constants are automatically replaced by (discontinuous) piecewise constant
Functions. The following two declarations are thus equivalent:

DG0 = FiniteElement("Discontinuous Lagrange", "triangle", 0)

c0 = Constant("triangle")

c1 = Function(DG0)

5.3.8 VectorConstant

The data type VectorConstant represents a constant vector value that is
unknown at compile-time. A VectorConstant is declared for a given cell
shape ("triangle" or "tetrahedron"):

c = VectorConstant(shape)

VectorConstants are automatically replaced by (discontinuous) vector-valued
piecewise constant Functions. The following two declarations are thus equiv-
alent:
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DG0 = VectorElement("Discontinuous Lagrange", "triangle", 0)

c0 = VectorConstant("triangle")

c1 = Function(DG0)

5.3.9 Index

The data type Index represents an index used for subscripting derivatives
or taking components of vector-valued functions. If an Index is declared
without any arguments,

i = Index()

a free Index is created, representing an index range determined by the con-
text; if used to subscript a vector-valued BasisFunction or a Function, the
range is given by the number of vector dimensions n, and if used to subscript
a derivative, the range is given by the dimension d of the underlying shape
of the finite element space. As we shall see below, indices can be a powerful
tool when used to define forms in tensor notation.

An Index can also be fixed, meaning that the value of the index remains
constant:

i = Index(0)

5.3.10 Built-ins

FFC declares a set of built-in variables and constructors for convenience, as
outlined below.
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Predefined indices

FFC automatically declares a sequence of free indices for convenience: i, j,
k, l, m, n. Note however that a user is free to declare new indices with other
names or even reuse these variables for other things than indices.

Identity

The data type Identity represents an n×n unit matrix of given size n. An
Identity is declared by specifying the dimension n:

I = Identity(n)

MeshSize

The function MeshSize is a predefined Function that may be used to repre-
sent the size of the mesh:

h = MeshSize(shape)

Note that it is the responsibility of the user (or the system for which the code
is generated) to map this function to a function (coefficient) that interpolates
the mesh size onto piecewise constants.

FacetNormal

The function FacetNormal is a predefined Function that may be used to
represent the unit normals of mesh facets.

n = FacetNormal(shape)
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Note that it is the responsibility of the user (or the system for which the code
is generated) to map this function to a function (coefficient) that interpolates
the facet normals onto vector-valued piecewise constants.

5.4 Scalar operators

The basic operators used to define a form are scalar addition, subtraction
and multiplication. Note the absence of division which is intentionally left
out (but is supplied for Functions, see below).

5.4.1 Scalar addition: +

Scalar addition is supported for all scalar-valued basic data types, thus
including BasisFunction, Function, Constant and expressions involving
these data types.

In addition, unary plus is supported for all basic data types.

5.4.2 Scalar subtraction: -

Scalar subtraction is supported for all scalar-valued basic data types, thus
including BasisFunction, Function, Constant and expressions involving
these data types.

In addition, unary minus is supported for all basic data types.

5.4.3 Scalar multiplication: *

Scalar multiplication is supported for all scalar-valued basic data types, thus
including BasisFunction, Function, Constant and expressions involving
these data types.
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5.4.4 Scalar division: /

Division is not allowed for BasisFunctions (and thus not for TestFunctions
and TrialFunctions) in the definition of a form. This is because division by
a BasisFunction in the definition of a form does not result in a valid multi-
linear form, since a multilinear form must be linear in each of its arguments.

However, division is allowed for Functions and is applied to the coefficients
of its nodal basis expansion. Thus 1/f for a Function f corresponds to the
operation

1/f ≈
∑

i

(1/fi) φi. (5.4)

See also Section 5.9.

5.5 Vector operators

Vectors are defined in the form language using Python’s built-in list type.
This means that all list operations such as slicing, list comprehension etc.
are supported. There is one exception to this rule, namely vector-valued
BasisFunctions and Functions, which are not lists (but can be made into
lists using the operator vec discussed below). The operators listed below
support all objects which are logically vectors, thus including both Python
lists and vector-valued expressions.

5.5.1 Component access: v[i]

Brackets [] are used to pick a given component of a logically vector-valued
expression. Thus, if v is a vector-valued expression, then v[0] represents a
function corresponding to the first component of (the values of) v. Similarly,
if i is an Index (free or fixed), then v[i] represents a function corresponding
to component i of (the values of) v.
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5.5.2 Inner product: dot(v, w)

The operator dot accepts as arguments two logically vector-valued expres-
sions and returns the inner product (dot product) of the two vectors:

dot(v, w) ↔ v · w =
n−1∑
i=0

viwi. (5.5)

Note that this operator is only defined for vectors of equal length.

5.5.3 Vector product: cross(v, w)

The operator cross accepts as arguments two logically vector-valued expres-
sions and returns a vector which is the cross product (vector product) of the
two vectors:

cross(v, w) ↔ v × w = (v1w2 − v2w1, v2w0 − v0w2, v0w1 − v1w0). (5.6)

Note that this operator is only defined for vectors of length three.

5.5.4 Matrix product: mult(v, w)

The operator mult accepts as arguments two matrices (or more generally,
tensors) and returns the matrix (tensor) product.

5.5.5 Transpose: transp(v)

The operator transp accepts as argument a matrix and returns the transpose
of the given matrix:

transp(v)[i][j] ↔ (v⊤)ij = vji. (5.7)
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5.5.6 Trace: trace(v)

The operator trace accepts as argument a square matrix v and returns its
trace, that is, the sum of its diagonal elements:

trace(v) ↔ trace(v) =
n−1∑
i=0

vii. (5.8)

5.5.7 Vector length: len(v)

The operator len accepts as argument a logically vector-valued expression
and returns its length (the number of vector components).

5.5.8 Rank: rank(v)

The operator rank returns the rank of the given argument. The rank of an
expression is defined as the number of times the operator [] can be applied
to the expression before a scalar is obtained. Thus, the rank of a scalar is
zero, the rank of a vector is one and the rank of a matrix is two.

5.5.9 Vectorization: vec(v)

The operator vec is used to create a Python list object from a logically
vector-valued expression. This operator has no effect on expressions which
are already lists. Thus, if v is a vector-valued BasisFunction, then vec(v)

returns a list of the components of v. This can be used to define forms in
terms of standard Python list operators or Python NumPy array operators.

The operator vec does not have to be used if the form is defined only in
terms of the basic operators of the form language.
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5.6 Differential operators

5.6.1 Scalar partial derivative: D(v, i)

The basic differential operator is the scalar partial derivative D. This dif-
ferential operator accepts as arguments a scalar or logically vector-valued
expression v together with a coordinate direction i and returns the partial
derivative of the expression in the given coordinate direction:

D(v, i) ↔
∂v

∂xi

. (5.9)

Alternatively, the member function dx can be used. For v an expression, the
two expressions D(v, i) and v.dx(i) are equivalent, but note that only the
operator D works on vector-valued expressions that are defined in terms of
Python lists.

5.6.2 Gradient: grad(v)

The operator grad accepts as argument an expression v and returns its gra-
dient. If v is scalar, the result is a vector containing the partial derivatives
in the coordinate directions:

grad(v) ↔ grad(v) = ∇v = (
∂v

∂x0

,
∂v

∂x1

, . . . ,
∂v

∂xd−1

). (5.10)

If v is logically vector-valued, the result is a matrix with rows given by the
gradients of each component:

grad(v)[i][j] ↔ (grad(v))ij = (∇v)ij =
∂vi

∂xj

. (5.11)

Thus, if v is scalar-valued, then grad(grad(v)) returns the Hessian of v,
and if v is vector-valued, then grad(v) is the Jacobian of v.
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5.6.3 Divergence: div(v)

The operator div accepts as argument a logically vector-valued expression
and returns its divergence:

div(v) ↔ div v = ∇ · v =
d−1∑
i=0

∂vi

∂xi

. (5.12)

Note that the length n of the vector v must be equal to the dimension d of
the underlying shape of the FiniteElement defining the function space for v.

5.6.4 Curl: curl(v)

The operator curl accepts as argument a logically vector-valued expression
and returns its curl:

curl(v) ↔ curl v = ∇× v = (
∂v2

∂x1

−
∂v1

∂x2

,
∂v0

∂x2

−
∂v2

∂x0

,
∂v1

∂x0

−
∂v0

∂x1

). (5.13)

Note that this operator is only defined for vectors of length three.

Alternatively, the name rot can be used for this operator.

5.7 Integrals

Each term of a valid form expression must be a scalar-valued expression
integrated exactly once. Integrals are expressed through multiplication with
a measure, representing either an integral over the interior of the domain Ω
(cell integral), the boundary ∂Ω of Ω (exterior facet integral) or the set of
interior facets (interior facet integral).

5.7.1 Cell integrals: *dx

A measure for integration over the interior of Ω is created as follows:
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dx = Integral("cell")

For convenience, FFC automatically declares the measure dx which can be
used to define cell integrals. If v is a scalar-valued expression, then the
integral of v over the interior of Ω is written as v*dx.

5.7.2 Exterior facet integrals: *ds

A measure for integration over the boundary of Ω is created as follows:

ds = Integral("exterior facet")

For convenience, FFC automatically declares the measure ds which can be
used to define cell integrals. If v is a scalar-valued expression, then the
integral of v over the boundary of Ω is written as v*ds.

5.7.3 Interior facet integrals: *dS

A measure for integration over the set of interior facets of Ω is created as
follows:

dS = Integral("interior facet")

For convenience, FFC automatically declares the measure dS which can be
used to define cell integrals. If v is a scalar-valued expression, then the
integral of v over the interior facets of Ω is written as v*dS.

42



FFC User Manual Anders Logg

5.7.4 Integrals over subsets

Integrals over multiple disjoint subdomains of Ω may be defined by specifying
an additional argument for the number of the subdomain associated with each
integral. The different measures may then be combined to express a form as
a sum of integrals over the different subdomains.

dx0 = Integral("cell", 0)

dx1 = Integral("cell", 1)

ds0 = Integral("exterior facet", 0)

ds1 = Integral("exterior facet", 1)

ds2 = Integral("exterior facet", 2)

dS0 = Integral("interior facet", 0)

a = ...*dx0 + ...*dx1 + ...*ds0 + ...*ds1 + ...*ds2 + ...*dS0

5.8 DG operators

FFC provides operators for implementation of discontinuous Galerkin meth-
ods. These include the evaluation of the jump and average of a function (or
in general an expression) over the interior facets (edges or faces) of a mesh.

5.8.1 Restriction: v(’+’) and v(’-’)

When integrating over interior facets (*dS), one may restrict expressions to
the positive or negative side of the facet:

element = FiniteElement("Discontinuous Lagrange",

"tetrahedron", 0)
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v = TestFunction(element)

u = TrialFunction(element)

f = Function(element)

a = f(’+’)*dot(grad(v)(’+’), grad(u)(’-’))*dS

Restriction may be applied to functions of any finite element space but will
only have effect when applied to expressions that are discontinuous across
facets.

5.8.2 Jump: jump(v)

The operator jump may be used to express the jump of a function across a
common facet of two cells. Two versions of the jump operator are provided.

If called with only one argument, then the jump operator evaluates to the
difference between the restrictions of the given expression on the positive and
negative sides of the facet:

jump(v) ↔ JvK = v+ − v−. (5.14)

If the expression v is scalar, then jump(v) will also be scalar, and if v is
vector-valued, then jump(v) will also be vector-valued.

If called with two arguments, jump(v, n) evaluates to the jump in v weighted
by n. Typically, n will be chosen to represent the unit outward normal of
the facet (as seen from each of the two neighboring cells). If v is scalar, then
jump(v, n) is given by

jump(v, n) ↔ JvKn = v+n+ + v−n−. (5.15)

If v is vector-valued, then jump(v, n) is given by

jump(v, n) ↔ JvKn = v+ · n+ + v− · n−. (5.16)

Thus, if the expression v is scalar, then jump(v, n) will be vector-valued,
and if v is vector-valued, then jump(v, n) will be scalar.
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5.8.3 Average: avg(v)

The operator avg may be used to express the average of a function across a
common facet of two cells:

avg(v) ↔ 〈v〉 =
1

2
(v+ + v−). (5.17)

If the expression v is scalar, then avg(v) will also be scalar, and if v is
vector-valued, then avg(v) will also be vector-valued.

5.9 Special operators

FFC provides a set of special operators for taking the inverse, absolute value
and square root of an expression. These operators are interpreted in a special
way and should be used with care. Firstly, the operators are only valid on
monomial expressions, that is, expressions that consist of only one term.
Secondly, the operators are applied directly to the coefficients of the basis
function expansion of the expression on which the operators are applied.
Thus, if v =

∑
i viφi, then op(v) is evaluated by

op(v) =
∑

i

op(vi)φi. (5.18)

5.9.1 Inverse: 1/v

The inverse of a monomial expression (for example a product of one or more
functions) may be evaluated (in the sense described above) as follows:

w = 1/v
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5.9.2 Absolute value: abs(v)

The absolute value of a monomial expression (for example a product of one or
more functions) may be evaluated (in the sense described above) as follows:

w = abs(v)

5.9.3 Square root: sqrt(v)

The square root of a monomial expression (for example a product of one or
more functions) may be evaluated (in the sense described above) as follows:

w = sqrt(v)

5.9.4 Combining operators

The special operators may applied successively and repeatedly on any mono-
mial expression. Thus, the following expression is valid:

v = Function(element)

w = sqrt(abs(1/v))

5.10 Index notation

FFC supports index notation, which is often a convenient way to express
forms. The basic principle of index notation is that summation is implicit
over indices repeated twice in each term of an expression. The following
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examples illustrate the index notation, assuming that each of the variables i
and j have been declared as a free Index:

v[i]*w[i] ↔
n−1∑
i=0

viwi, (5.19)

D(v, i)*D(w, i) ↔
d−1∑
i=0

∂v

∂xi

∂w

∂xi

= ∇v · ∇w, (5.20)

D(v[i], i) ↔
d−1∑
i=0

∂vi

∂xi

= ∇ · v, (5.21)

D(v[i], j)*D(w[i], j) ↔
n−1∑
i=0

d−1∑
j=0

∂vi

∂xj

∂wi

∂xj

. (5.22)

Index notation is used internally by FFC to represent multilinear forms and
FFC will try to simplify forms by replacing sums with index expressions.

5.11 User-defined operators

A user may define new operators, using standard Python syntax. As an
example, consider the strain-rate operator ǫ of linear elasticity, defined by

ǫ(v) =
1

2
(∇v + (∇v)⊤). (5.23)

This operator can be implemented as a function using the Python def key-
word:

def epsilon(v):

return 0.5*(grad(v) + transp(grad(v)))

Alternatively, using the shorthand lambda notation, the strain operator may
be defined as follows:

epsilon = lambda v: 0.5*(grad(v) + transp(grad(v)))
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Chapter 6

Examples

The following examples illustrate basic usage of the form language for the
definition of a collection of standard multilinear forms. We assume that dx

has been declared as an integral over the interior of Ω and that both i and
j have been declared as a free Index.

The examples presented below can all be found in the subdirectory src/demo

of the FFC source tree together with numerous other examples.

6.1 The mass matrix

As a first example, consider the bilinear form corresponding to a mass matrix,

a(v, u) =

∫
Ω

v u dx, (6.1)

which can be implemented in FFC as follows:

element = FiniteElement("Lagrange", "triangle", 1)

v = TestFunction(element)

u = TrialFunction(element)
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a = v*u*dx

This example is implemented in the file Mass.form in the collection of demon-
stration forms included with the FFC source distribution.

6.2 Poisson’s equation

The bilinear and linear forms form for Poisson’s equation,

a(v, u) =

∫
Ω

∇v · ∇u dx, (6.2)

L(v) =

∫
Ω

v f dx, (6.3)

can be implemented as follows:

element = FiniteElement("Lagrange", "triangle", 1)

v = TestFunction(element)

u = TrialFunction(element)

f = Function(element)

a = dot(grad(v), grad(u))*dx

L = v*f*dx

Alternatively, index notation can be used to express the scalar product:

a = D(v, i)*D(u, i)*dx

This example is implemented in the file Poisson.form in the collection of
demonstration forms included with the FFC source distribution.
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6.3 Vector-valued Poisson

The bilinear and linear forms for a system of (independent) Poisson equa-
tions,

a(v, u) =

∫
Ω

∇v : ∇u dx, (6.4)

L(v) =

∫
Ω

v · f dx, (6.5)

with v, u and f vector-valued can be implemented as follows:

element = VectorElement("Lagrange", "triangle", 1)

v = TestFunction(element)

u = TrialFunction(element)

f = Function(element)

a = dot(grad(v), grad(u))*dx

L = dot(v, f)*dx

Alternatively, index notation may be used:

a = D(v[i], j)*D(u[i], j)*dx

L = v[i]*f[i]*dx

This example is implemented in the file PoissonSystem.form in the collec-
tion of demonstration forms included with the FFC source distribution.

6.4 The strain-strain term of linear elasticity

The strain-strain term of linear elasticity,

a(v, u) =

∫
Ω

ǫ(v) : ǫ(u) dx, (6.6)
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where

ǫ(v) =
1

2
(∇v + (∇v)⊤) (6.7)

can be implemented as follows:

element = VectorElement("Lagrange", "tetrahedron", 1)

v = TestFunction(element)

u = TrialFunction(element)

def epsilon(v):

return 0.5*(grad(v) + transp(grad(v)))

a = dot(epsilon(v), epsilon(u))*dx

Alternatively, index notation can be used to define the form:

a = 0.25*(D(v[i], j) + D(v[j], i))* \

(D(u[i], j) + D(u[j], i))*dx

This example is implemented in the file Elasticity.form in the collection
of demonstration forms included with the FFC source distribution.

6.5 The nonlinear term of Navier–Stokes

The bilinear form for fixed-point iteration on the nonlinear term of the in-
compressible Navier–Stokes equations,

a(v, u) =

∫
Ω

v · ((w · ∇)u) dx, (6.8)

with w the frozen velocity from a previous iteration, can be conveniently
implemented using index notation as follows:
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element = FiniteElement("Vector Lagrange", "tetrahedron", 1)

v = TestFunction(element)

u = TrialFunction(element)

w = Function(element)

a = v[i]*w[j]*D(u[i], j)*dx

This example is implemented in the file NavierStokes.form in the collection
of demonstration forms included with the FFC source distribution.

6.6 The heat equation

Discretizing the heat equation,

u̇ −∇ · (c∇u) = f, (6.9)

in time using the dG(0) method (backward Euler), we obtain the following
variational problem for the discrete solution uh = uh(x, t): Find un

h = uh(·, tn)
with un−1

h = uh(·, tn−1) given such that

1

kn

∫
Ω

v (un
h − un−1

h ) dx +

∫
Ω

c∇v · ∇un
h dx =

∫
Ω

v fn dx (6.10)

for all test functions v, where k = tn − tn−1 denotes the time step . In the
example below, we implement this variational problem with piecewise linear
test and trial functions, but other choices are possible (just choose another
finite element).

Rewriting the variational problem in the standard form a(v, uh) = L(v) for
all v, we obtain the following pair of bilinear and linear forms:

a(v, un
h) =

∫
Ω

v un
h dx + kn

∫
Ω

c∇v · ∇un
h dx, (6.11)

L(v) =

∫
Ω

v un−1

h dx + kn

∫
Ω

v fn dx, (6.12)

which can be implemented as follows:
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element = FiniteElement("Lagrange", "triangle", 1)

v = TestFunction(element) # Test function

u1 = TrialFunction(element) # Value at t_n

u0 = Function(element) # Value at t_n-1

c = Function(element) # Heat conductivity

f = Function(element) # Heat source

k = Constant() # Time step

a = v*u1*dx + k*c*dot(grad(v), grad(u1))*dx

L = v*u0*dx + k*v*f*dx

6.7 Mixed formulation of Stokes

To solve Stokes’ equations,

− ∆u + ∇p = f, (6.13)

∇ · u = 0, (6.14)

we write the variational problem in standard form a(v, u) = L(v) for all v to
obtain the following pair of bilinear and linear forms:

a((v, q), (u, p)) =

∫
Ω

∇v : ∇u − (∇ · v) p + q (∇ · u) dx, (6.15)

L((v, q)) =

∫
Ω

v · f dx. (6.16)

Using a mixed formulation with Taylor-Hood elements, this can be imple-
mented as follows:

P2 = FiniteElement("Vector Lagrange", "triangle", 2)

P1 = FiniteElement("Lagrange", "triangle", 1)

TH = P2 + P1

(v, q) = TestFunctions(TH)
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(u, p) = TrialFunctions(TH)

f = Function(P2)

a = (dot(grad(v), grad(u)) - div(v)*P + q*div(u))*dx

L = dot(v, f)*dx

This example is implemented in the file Heat.form in the collection of demon-
stration forms included with the FFC source distribution.

6.8 Mixed formulation of Poisson

We next consider the following formulation of Poisson’s equation as a pair of
first order equations for σ ∈ H(div) and u ∈ L2:

σ + ∇u = 0, (6.17)

∇ · σ = f. (6.18)

We multiply the two equations by a pair of test functions τ and w and
integrate by parts to obtain the following variational problem: Find (σ, u) ∈
V = H(div) × L2 such that

a((τ, w), (σ, u)) = L((τ, w)) ∀ (τ, w) ∈ V, (6.19)

where

a((τ, w), (σ, u)) =

∫
Ω

τ · σ −∇ · τ u + w∇ · σ dx, (6.20)

L((τ, w)) =

∫
Ω

w · f dx. (6.21)

We may implement the corresponding forms in the FFC form language using
first order BDM H(div)-conforming elements for σ and piecewise constant
L2-conforming elements for u as follows:
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BDM1 = FiniteElement("Brezzi-Douglas-Marini", "triangle", 1)

DG0 = FiniteElement("Discontinuous Lagrange", "triangle", 0)

element = BDM1 + DG0

(tau, w) = TestFunctions(element)

(sigma, u) = TrialFunctions(element)

f = Function(DG0)

a = (dot(tau, sigma) - div(tau)*u + w*div(sigma))*dx

L = w*f*dx

This example is implemented in the file MixedPoisson.form in the collection
of demonstration forms included with the FFC source distribution.

6.9 Poisson’s equation with DG elements

We consider again Poisson’s equation, but now in an (interior penalty) dis-
continuous Galerkin formulation: Find u ∈ V = L2 such that

a(v, u) = L(v) ∀v ∈ V,

where

a(v, u) =

∫
Ω

∇v · ∇u dx

+
∑

S

∫
S

−〈∇v〉 · JuKn − JvKn · 〈∇u〉 + (α/h)JvKn · JuKn dS

+

∫
∂Ω

−∇v · JuKn − JvKn · ∇u + (γ/h)vu ds

L(v) =

∫
Ω

vf dx +

∫
∂Ω

vg ds.

(6.22)

The corresponding finite element variational problem for discontinuous first
order elements may be implemented as follows:
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DG1 = FiniteElement("Discontinuous Lagrange", "triangle", 1)

v = TestFunction(DG1)

u = TrialFunction(DG1)

f = Function(DG1)

g = Function(DG1)

n = FacetNormal("triangle")

h = MeshSize("triangle")

a = dot(grad(v), grad(u))*dx \

- dot(avg(grad(v)), jump(u, n))*dS \

- dot(jump(v, n), avg(grad(u)))*dS \

+ alpha/h(’+’)*dot(jump(v, n), jump(u, n))*dS \

- dot(grad(v), jump(u, n))*ds \

- dot(jump(v, n),\ grad(u))*ds \

+ gamma/h*v*u*ds

L = v*f*dx + v*g*ds

This example is implemented in the file PoissonDG.form in the collection of
demonstration forms included with the FFC source distribution.
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Appendix A

Reference cells

The definition of reference cells used in FFC follows the UFC specification. [2,
3]

The following five reference cells are covered by the UFC specification: the
reference interval, the reference triangle, the reference quadrilateral, the ref-
erence tetrahedron and the reference hexahedron.

Reference cell Dimension #Vertices #Facets

The reference interval 1 2 2

The reference triangle 2 3 3

The reference quadrilateral 2 4 4

The reference tetrahedron 3 4 4

The reference hexahedron 3 8 6

Table A.1: Reference cells covered by the UFC specification.

The UFC specification assumes that each cell in a finite element mesh is
always isomorphic to one of the reference cells.
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A.1 The reference interval

The reference interval is shown in Figure A.1 and is defined by its two vertices
with coordinates as specified in Table A.2.

0 1

Figure A.1: The reference interval.

Vertex Coordinate

v0 x = 0

v1 x = 1

Table A.2: Vertex coordinates of the reference interval.
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A.2 The reference triangle

The reference triangle is shown in Figure A.2 and is defined by its three
vertices with coordinates as specified in Table A.3.

(0, 0) (1, 0)

(0, 1)

Figure A.2: The reference triangle.

Vertex Coordinate

v0 x = (0, 0)

v1 x = (1, 0)

v2 x = (0, 1)

Table A.3: Vertex coordinates of the reference triangle.
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A.3 The reference quadrilateral

The reference quadrilateral is shown in Figure A.3 and is defined by its four
vertices with coordinates as specified in Table A.4.

(0, 0) (1, 0)

(1, 1)(0, 1)

Figure A.3: The reference quadrilateral.

Vertex Coordinate

v0 x = (0, 0)

v1 x = (1, 0)

v2 x = (1, 1)

v3 x = (0, 1)

Table A.4: Vertex coordinates of the reference quadrilateral.
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A.4 The reference tetrahedron

The reference tetrahedron is shown in Figure A.4 and is defined by its four
vertices with coordinates as specified in Table A.5.

(0, 0, 0)

(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

Figure A.4: The reference tetrahedron.

Vertex Coordinate

v0 x = (0, 0, 0)

v1 x = (1, 0, 0)

v2 x = (0, 1, 0)

v3 x = (0, 0, 1)

Table A.5: Vertex coordinates of the reference tetrahedron.

65



FFC User Manual Anders Logg

A.5 The reference hexahedron

The reference hexahedron is shown in Figure A.5 and is defined by its eight
vertices with coordinates as specified in Table A.6.

(0, 0, 0)

(1, 0, 0)

(1, 1, 0)

(0, 0, 1) (1, 1, 1)
(0, 1, 1)

Figure A.5: The reference hexahedron.

Vertex Coordinate

v0 x = (0, 0, 0)

v1 x = (1, 0, 0)

v2 x = (1, 1, 0)

v3 x = (0, 1, 0)

Vertex Coordinate

v4 x = (0, 0, 1)

v5 x = (1, 0, 1)

v6 x = (1, 1, 1)

v7 x = (0, 1, 1)

Table A.6: Vertex coordinates of the reference hexahedron.
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Appendix B

Numbering of mesh entities

The numbering of mesh entities used in FFC follows the UFC specification. [2,
3]

The UFC specification dictates a certain numbering of the vertices, edges etc.
of the cells of a finite element mesh. First, an ad hoc numbering is picked
for the vertices of each cell. Then, the remaining entities are ordered based
on a simple rule, as described in detail below.

B.1 Basic concepts

The topological entities of a cell (or mesh) are referred to as mesh entities.
A mesh entity can be identified by a pair (d, i), where d is the topological
dimension of the mesh entity and i is a unique index of the mesh entity. Mesh
entities are numbered within each topological dimension from 0 to nd − 1,
where nd is the number of mesh entities of topological dimension d.

For convenience, mesh entities of topological dimension 0 are referred to as
vertices, entities of dimension 1 as edges, entities of dimension 2 as faces,
entities of codimension 1 as facets and entities of codimension 0 as cells.
These concepts are summarized in Table B.1.
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Thus, the vertices of a tetrahedron are identified as v0 = (0, 0), v1 = (0, 1)
and v2 = (0, 2), the edges are e0 = (1, 0), e1 = (1, 1), e2 = (1, 2), e3 = (1, 3),
e4 = (1, 4) and e5 = (1, 5), the faces (facets) are f0 = (2, 0), f1 = (2, 1),
f2 = (2, 2) and f3 = (2, 3), and the cell itself is c0 = (3, 0).

Entity Dimension Codimension

Vertex 0 –

Edge 1 –

Face 2 –

Facet – 1

Cell – 0

Table B.1: Named mesh entities.

B.2 Numbering of vertices

For simplicial cells (intervals, triangles and tetrahedra) of a finite element
mesh, the vertices are numbered locally based on the corresponding global
vertex numbers. In particular, a tuple of increasing local vertex numbers
corresponds to a tuple of increasing global vertex numbers. This is illustrated
in Figure B.1 for a mesh consisting of two triangles.

For non-simplicial cells (quadrilaterals and hexahedra), the numbering is
arbitrary, as long as each cell is isomorphic to the corresponding reference cell
by matching each vertex with the corresponding vertex in the reference cell.
This is illustrated in Figure B.2 for a mesh consisting of two quadrilaterals.
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v0

v0 v1

v1

v2v2

0

1

2

3

Figure B.1: The vertices of a simplicial mesh are numbered locally based on the
corresponding global vertex numbers.

v0v0

v1

v1

v2v2

v3

v3

0 1 2

345

Figure B.2: The local numbering of vertices of a non-simplicial mesh is arbitrary,
as long as each cell is isomorphic to the reference cell by matching each vertex to
the corresponding vertex of the reference cell.
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B.3 Numbering of other mesh entities

When the vertices have been numbered, the remaining mesh entities are num-
bered within each topological dimension based on a lexicographical ordering

of the corresponding ordered tuples of non-incident vertices.

As an illustration, consider the numbering of edges (the mesh entities of
topological dimension one) on the reference triangle in Figure B.3. To number
the edges of the reference triangle, we identify for each edge the corresponding
non-incident vertices. For each edge, there is only one such vertex (the vertex
opposite to the edge). We thus identify the three edges in the reference
triangle with the tuples (v0), (v1) and (v2). The first of these is edge e0

between vertices v1 and v2 opposite to vertex v0, the second is edge e1 between
vertices v0 and v2 opposite to vertex v1, and the third is edge e2 between
vertices v0 and v1 opposite to vertex v2.

Similarly, we identify the six edges of the reference tetrahedron with the
corresponding non-incident tuples (v0, v1), (v0, v2), (v0, v3), (v1, v2), (v1, v3)
and (v2, v3). The first of these is edge e0 between vertices v2 and v3 opposite
to vertices v0 and v1 as shown in Figure B.4.

v0 v1

v2

e0

Figure B.3: Mesh entities are ordered based on a lexicographical ordering of the
corresponding ordered tuples of non-incident vertices. The first edge e0 is non-
incident to vertex v0.
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v0

v1

v2

v3

e0

Figure B.4: Mesh entities are ordered based on a lexicographical ordering of the
corresponding ordered tuples of non-incident vertices. The first edge e0 is non-
incident to vertices v0 and v1.

B.3.1 Relative ordering

The relative ordering of mesh entities with respect to other incident mesh
entities follows by sorting the entities by their (global) indices. Thus, the
pair of vertices incident to the first edge e0 of a triangular cell is (v1, v2), not
(v2, v1). Similarly, the first face f0 of a tetrahedral cell is incident to vertices
(v1, v2, v3).

For simplicial cells, the relative ordering in combination with the convention
of numbering the vertices locally based on global vertex indices means that
two incident cells will always agree on the orientation of incident subsimplices.
Thus, two incident triangles will agree on the orientation of the common edge
and two incident tetrahedra will agree on the orientation of the common
edge(s) and the orientation of the common face (if any). This is illustrated
in Figure B.5 for two incident triangles sharing a common edge.
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v0

v0 v1

v1

v2v2

Figure B.5: Two incident triangles will always agree on the orientation of the
common edge.

B.3.2 Limitations

The UFC specification is only concerned with the ordering of mesh entities
with respect to entities of larger topological dimension. In other words, the
UFC specification is only concerned with the ordering of incidence relations
of the class d − d′ where d > d′. For example, the UFC specification is not
concerned with the ordering of incidence relations of the class 0− 1, that is,
the ordering of edges incident to vertices.
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B.4 Numbering schemes for reference cells

The numbering scheme is demonstrated below for cells isomorphic to each of
the five reference cells.

B.4.1 Numbering for intervals

Entity Incident vertices Non-incident vertices

v0 = (0, 0) (v0) (v1)

v1 = (0, 1) (v1) (v0)

c0 = (1, 0) (v0, v1) ∅

Table B.2: Numbering of mesh entities on intervals.

B.4.2 Numbering for triangular cells

Entity Incident vertices Non-incident vertices

v0 = (0, 0) (v0) (v1, v2)

v1 = (0, 1) (v1) (v0, v2)

v2 = (0, 2) (v2) (v0, v1)

e0 = (1, 0) (v1, v2) (v0)

e1 = (1, 1) (v0, v2) (v1)

e2 = (1, 2) (v0, v1) (v2)

c0 = (2, 0) (v0, v1, v2) ∅

Table B.3: Numbering of mesh entities on triangular cells.
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B.4.3 Numbering for quadrilateral cells

Entity Incident vertices Non-incident vertices

v0 = (0, 0) (v0) (v1, v2, v3)

v1 = (0, 1) (v1) (v0, v2, v3)

v2 = (0, 2) (v2) (v0, v1, v3)

v3 = (0, 3) (v3) (v0, v1, v2)

e0 = (1, 0) (v2, v3) (v0, v1)

e1 = (1, 1) (v1, v2) (v0, v3)

e2 = (1, 2) (v0, v3) (v1, v2)

e3 = (1, 3) (v0, v1) (v2, v3)

c0 = (2, 0) (v0, v1, v2, v3) ∅

Table B.4: Numbering of mesh entities on quadrilateral cells.
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B.4.4 Numbering for tetrahedral cells

Entity Incident vertices Non-incident vertices

v0 = (0, 0) (v0) (v1, v2, v3)

v1 = (0, 1) (v1) (v0, v2, v3)

v2 = (0, 2) (v2) (v0, v1, v3)

v3 = (0, 3) (v3) (v0, v1, v2)

e0 = (1, 0) (v2, v3) (v0, v1)

e1 = (1, 1) (v1, v3) (v0, v2)

e2 = (1, 2) (v1, v2) (v0, v3)

e3 = (1, 3) (v0, v3) (v1, v2)

e4 = (1, 4) (v0, v2) (v1, v3)

e5 = (1, 5) (v0, v1) (v2, v3)

f0 = (2, 0) (v1, v2, v3) (v0)

f1 = (2, 1) (v0, v2, v3) (v1)

f2 = (2, 2) (v0, v1, v3) (v2)

f3 = (2, 3) (v0, v1, v2) (v3)

c0 = (3, 0) (v0, v1, v2, v3) ∅

Table B.5: Numbering of mesh entities on tetrahedral cells.
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B.4.5 Numbering for hexahedral cells

Entity Incident vertices Non-incident vertices

v0 = (0, 0) (v0) (v1, v2, v3, v4, v5, v6, v7)

v1 = (0, 1) (v1) (v0, v2, v3, v4, v5, v6, v7)

v2 = (0, 2) (v2) (v0, v1, v3, v4, v5, v6, v7)

v3 = (0, 3) (v3) (v0, v1, v2, v4, v5, v6, v7)

v4 = (0, 4) (v4) (v0, v1, v2, v3, v5, v6, v7)

v5 = (0, 5) (v5) (v0, v1, v2, v3, v4, v6, v7)

v6 = (0, 6) (v6) (v0, v1, v2, v3, v4, v5, v7)

v7 = (0, 7) (v7) (v0, v1, v2, v3, v4, v5, v6)

e0 = (1, 0) (v6, v7) (v0, v1, v2, v3, v4, v5)

e1 = (1, 1) (v5, v6) (v0, v1, v2, v3, v4, v7)

e2 = (1, 2) (v4, v7) (v0, v1, v2, v3, v5, v6)

e3 = (1, 3) (v4, v5) (v0, v1, v2, v3, v6, v7)

e4 = (1, 4) (v3, v7) (v0, v1, v2, v4, v5, v6)

e5 = (1, 5) (v2, v6) (v0, v1, v3, v4, v5, v7)

e6 = (1, 6) (v2, v3) (v0, v1, v4, v5, v6, v7)

e7 = (1, 7) (v1, v5) (v0, v2, v3, v4, v6, v7)

e8 = (1, 8) (v1, v2) (v0, v3, v4, v5, v6, v7)

e9 = (1, 9) (v0, v4) (v1, v2, v3, v5, v6, v7)

e10 = (1, 10) (v0, v3) (v1, v2, v4, v5, v6, v7)

e11 = (1, 11) (v0, v1) (v2, v3, v4, v5, v6, v7)

f0 = (2, 0) (v4, v5, v6, v7) (v0, v1, v2, v3)

f1 = (2, 1) (v2, v3, v6, v7) (v0, v1, v4, v5)

f2 = (2, 2) (v1, v2, v5, v6) (v0, v3, v4, v7)

f3 = (2, 3) (v0, v3, v4, v7) (v1, v2, v5, v6)

f4 = (2, 4) (v0, v1, v4, v5) (v2, v3, v6, v7)

f5 = (2, 5) (v0, v1, v2, v3) (v4, v5, v6, v7)

c0 = (3, 0) (v0, v1, v2, v3, v4, v5, v6, v7) ∅

Table B.6: Numbering of mesh entities on hexahedral cells.
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Appendix C

Installation

The source code of FFC is portable and should work on any system with a
standard Python installation. Questions, bug reports and patches concerning
the installation should be directed to the FFC mailing list at the address

ffc-dev@fenics.org

FFC must currently be installed directly from source, but Debian (Ubuntu)

packages will be available in the future, for FFC and other FEniCS compo-
nents.

C.1 Installing from source

C.1.1 Dependencies and requirements

FFC depends on a number of libraries that need to be installed on your
system. These libraries include FIAT and the Python NumPy module. In
addition, you need to have a working Python installation on your system.
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Installing Python

FFC is developed for Python 2.5, but should also work with Python 2.3 and
2.4. To check which version of Python you have installed, issue the command
python -V:

# python -V

Python 2.5.1

If Python is not installed on your system, it can be downloaded from

http://www.python.org/

Follow the installation instructions for Python given on the Python web page.
For Debian (Ubuntu) users, the package to install is named python.

Installing NumPy

In addition to Python itself, FFC depends on the Python package NumPy,
which is used by FFC to process multidimensional arrays (tensors). Python
NumPy can be downloaded from

http://www.scipy.org/

For Debian (Ubuntu) users, the package to install is python-numpy.

Installing FIAT

FFC depends on the latest version of FIAT, which can be downloaded from
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http://www.fenics.org/

FIAT is used by FFC to create and evaluate finite element basis functions
and quadrature rules. The installation instructions for FIAT are similar to
those for FFC given in detail below.

C.1.2 Downloading the source code

The latest release of FFC can be obtained as a tar.gz archive in the down-
load section at

http://www.fenics.org/

Download the latest release of FFC, for example ffc-x.y.z.tar.gz, and
unpack using the command

# tar zxfv ffc-x.y.z.tar.gz

This creates a directory ffc-x.y.z containing the FFC source code.

If you want the very latest version of FFC, it can be accessed directly from
the development repository through hg (Mercurial):

# hg clone http://www.fenics.org/hg/ffc

This version may contain features not yet present in the latest release, but
may also be less stable and even not work at all.

79



FFC User Manual Anders Logg

C.1.3 Installing FFC

FFC follows the standard installation procedure for Python packages. Enter
the source directory of FFC and issue the following command:

# python setup.py install

This will install the FFC Python package in a subdirectory called ffc in
the default location for user-installed Python packages (usually something
like /usr/lib/python2.5/site-packages). In addition, the compiler exe-
cutable ffc (a Python script) will be installed in the default directory for
user-installed Python scripts (usually in /usr/bin).

To see a list of optional parameters to the installation script, type

# python setup.py install --help

If you don’t have root access to the system you are using, you can pass the
--home option to the installation script to install FFC in your home directory:

# mkdir ~/local

# python setup.py install --home ~/local

This installs the FFC package in the directory ~/local/lib/python and the
FFC executable in ~/local/bin. If you use this option, make sure to set
the environment variable PYTHONPATH to ~/local/lib/python and to add
~/local/bin to the PATH environment variable.

C.1.4 Compiling the demos

To test your installation of FFC, enter the subdirectory src/demo and com-
pile some of the demonstration forms. With FFC installed on your system,
just type
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# ffc Poisson.form

to compile the bilinear and linear forms for Poisson’s equation. This will
generate a C++ header file called Poisson.h containing UFC [2, 3] code
that can be used to assemble the linear system for Poisson’s equation.

It is also possible to compile the forms in src/demo without needing to install
FFC on your system. In that case, you need to supply the path to the FFC
executable:

# ../bin/ffc Poisson.form

C.1.5 Verifying the generated code

To verify the output generated by the compiler, enter the sub directory
src/test/regression from within the FFC source tree and run the script
test.py

# python test.py

This script compiles all forms found in src/demo and compares the output
with previously compiled forms in src/test/regression/reference.

C.2 Debian (Ubuntu) package

In preparation.
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Appendix D

Contributing code

If you have created a new module, fixed a bug somewhere, or have made
a small change which you want to contribute to FFC, then the best way
to do so is to send us your contribution in the form of a patch. A patch
is a file which describes how to transform a file or directory structure into
another. The patch is built by comparing a version which both parties have
against the modified version which only you have. Patches can be created
with Mercurial or diff.

D.1 Creating bundles/patches

D.1.1 Creating a Mercurial (hg) bundle

Creating bundles is the preferred way of submitting patches. It has several
advantages over plain diffs. If you are a frequent contributor, consider pub-
lishing your source tree so that the FFC maintainers (and other users) may
pull your changes directly from your tree.

A bundle contains your contribution to FFC in the form of a binary patch file
generated by Mercurial [1], the revision control system used by FFC. Follow
the procedure described below to create your bundle.
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1. Clone the FFC repository:

# hg clone http://www.fenics.org/hg/ffc

2. If your contribution consists of new files, add them to the correct loca-
tion in the FFC directory tree. Enter the FFC directory and add these
files to the local repository by typing:

# hg add <files>

where <files> is the list of new files. You do not have to take any
action for previously existing files which have been modified. Do not
add temporary or binary files.

3. Enter the FFC directory and commit your contribution:

# hg commit -m "<description>"

where <description> is a short description of what your patch accom-
plishes.

4. Create the bundle:

# hg bundle ffc-<identifier>-<date>.hg

http://www.fenics.org/hg/ffc

written as one line, where <identifier> is a keyword that can be used
to identify the bundle as coming from you (your username, last name,
first name, a nickname etc) and <date> is today’s date in the format
yyyy-mm-dd.
The bundle now exists as ffc-<identifier>-<date>.hg.

When you add your contribution at point 2, make sure that only the files
that you want to share are present by typing:

# hg status
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This will produce a list of files. Those marked with a question mark are not
tracked by Mercurial. You can track them by using the add command as
shown above. Once you have added these files, their status changes form ?

to A.

D.1.2 Creating a standard (diff) patch file

The tool used to create a patch is called diff and the tool used to apply the
patch is called patch.

Here’s an example of how it works. Start from the latest release of FFC,
which we here assume is release x.y.z. You then have a directory structure
under ffc-x.y.z where you have made modifications to some files which you
think could be useful to other users.

1. Clean up your modified directory structure to remove temporary and
binary files which will be rebuilt anyway:

# make clean

2. From the parent directory, rename the FFC directory to something else:

# mv ffc-x.y.z ffc-x.y.z-mod

3. Unpack the version of FFC that you started from:

# tar zxfv ffc-x.y.z.tar.gz

4. You should now have two FFC directory structures in your current
directory:

# ls

ffc-x.y.z

ffc-x.y.z-mod

5. Now use the diff tool to create the patch:
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# diff -u --new-file --recursive ffc-x.y.z

ffc-x.y.z-mod > ffc-<identifier>-<date>.patch

written as one line, where <identifier> is a keyword that can be used
to identify the patch as coming from you (your username, last name,
first name, a nickname etc) and <date> is today’s date in the format
yyyy-mm-dd.

6. The patch now exists as ffc-<identifier>-<date>.patch and can
be distributed to other people who already have ffc-x.y.z to easily
create your modified version. If the patch is large, compressing it with
for example gzip is advisable:

# gzip ffc-<identifier>-<date>.patch

D.2 Sending bundles/patches

Patch and bundle files should be sent to the FFC mailing list at the address

ffc-dev@fenics.org

Include a short description of what your patch/bundle accomplishes. Small
patches/bundles have a better chance of being accepted, so if you are making
a major contribution, please consider breaking your changes up into several
small self-contained patches/bundles if possible.
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D.3 Applying changes

D.3.1 Applying a Mercurial bundle

You have received a patch in the form of a Mercurial bundle. The following
procedure shows how to apply the patch to your version of FFC.

1. Before applying the patch, you can check its content by entering the
FFC directory and typing:

# hg incoming -p

bundle://<path>/ffc-<identifier>-<date>.hg

written as one line, where <path> is the path to the bundle. <path>

can be omitted if the bundle is in the FFC directory. The option -p

can be omitted if you are only interested in a short summary of the
changesets found in the bundle.

2. To apply the patch to your version of FFC type:

# hg unbundle <path>/ffc-<identifier>-<date>.hg

followed by:

# hg update

D.3.2 Applying a standard patch file

Let’s say that a patch has been built relative to FFC release x.y.z. The
following description then shows how to apply the patch to a clean version
of release x.y.z.

1. Unpack the version of FFC which the patch is built relative to:
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# tar zxfv ffc-x.y.z.tar.gz

2. Check that you have the patch ffc-<identifier>-<date>.patch and
the FFC directory structure in the current directory:

# ls

ffc-x.y.z

ffc-<identifier>-<date>.patch

Unpack the patch file using gunzip if necessary.

3. Enter the FFC directory structure:

# cd ffc-x.y.z

4. Apply the patch:

# patch -p1 < ../ffc-<identifier>-<date>.patch

The option -p1 strips the leading directory from the filename references
in the patch, to match the fact that we are applying the patch from
inside the directory. Another useful option to patch is --dry-run

which can be used to test the patch without actually applying it.

5. The modified version now exists as ffc-x.y.z.

D.4 License agreement

By contributing a patch to FFC, you agree to license your contributed code
under the GNU General Public License (a condition also built into the GPL
license of the code you have modified). Before creating the patch, please
update the author and date information of the file(s) you have modified
according to the following example:
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__author__ = "Anders Logg (logg@simula.no)"

__date__ = "2004-11-17 -- 2005-09-09"

__copyright__ = "Copyright (C) 2004, 2005 Anders Logg"

__license__ = "GNU GPL Version 2"

# Modified by Foo Bar 2007

As a rule of thumb, the original author of a file holds the copyright.
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Appendix E

License

FFC is licensed under the GNU General Public License (GPL) version 2,
included verbatim below.

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies

of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your

freedom to share and change it. By contrast, the GNU General Public

License is intended to guarantee your freedom to share and change free

software--to make sure the software is free for all its users. This

General Public License applies to most of the Free Software

Foundation’s software and to any other program whose authors commit to

using it. (Some other Free Software Foundation software is covered by

the GNU Library General Public License instead.) You can apply it to

your programs, too.

When we speak of free software, we are referring to freedom, not

price. Our General Public Licenses are designed to make sure that you

have the freedom to distribute copies of free software (and charge for
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this service if you wish), that you receive source code or can get it

if you want it, that you can change the software or use pieces of it

in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid

anyone to deny you these rights or to ask you to surrender the rights.

These restrictions translate to certain responsibilities for you if you

distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether

gratis or for a fee, you must give the recipients all the rights that

you have. You must make sure that they, too, receive or can get the

source code. And you must show them these terms so they know their

rights.

We protect your rights with two steps: (1) copyright the software, and

(2) offer you this license which gives you legal permission to copy,

distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain

that everyone understands that there is no warranty for this free

software. If the software is modified by someone else and passed on, we

want its recipients to know that what they have is not the original, so

that any problems introduced by others will not reflect on the original

authors’ reputations.

Finally, any free program is threatened constantly by software

patents. We wish to avoid the danger that redistributors of a free

program will individually obtain patent licenses, in effect making the

program proprietary. To prevent this, we have made it clear that any

patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and

modification follow.

GNU GENERAL PUBLIC LICENSE

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains

a notice placed by the copyright holder saying it may be distributed

under the terms of this General Public License. The "Program", below,

refers to any such program or work, and a "work based on the Program"

means either the Program or any derivative work under copyright law:

that is to say, a work containing the Program or a portion of it,

either verbatim or with modifications and/or translated into another
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language. (Hereinafter, translation is included without limitation in

the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not

covered by this License; they are outside its scope. The act of

running the Program is not restricted, and the output from the Program

is covered only if its contents constitute a work based on the

Program (independent of having been made by running the Program).

Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s

source code as you receive it, in any medium, provided that you

conspicuously and appropriately publish on each copy an appropriate

copyright notice and disclaimer of warranty; keep intact all the

notices that refer to this License and to the absence of any warranty;

and give any other recipients of the Program a copy of this License

along with the Program.

You may charge a fee for the physical act of transferring a copy, and

you may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion

of it, thus forming a work based on the Program, and copy and

distribute such modifications or work under the terms of Section 1

above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices

stating that you changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in

whole or in part contains or is derived from the Program or any

part thereof, to be licensed as a whole at no charge to all third

parties under the terms of this License.

c) If the modified program normally reads commands interactively

when run, you must cause it, when started running for such

interactive use in the most ordinary way, to print or display an

announcement including an appropriate copyright notice and a

notice that there is no warranty (or else, saying that you provide

a warranty) and that users may redistribute the program under

these conditions, and telling the user how to view a copy of this

License. (Exception: if the Program itself is interactive but

does not normally print such an announcement, your work based on

the Program is not required to print an announcement.)
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These requirements apply to the modified work as a whole. If

identifiable sections of that work are not derived from the Program,

and can be reasonably considered independent and separate works in

themselves, then this License, and its terms, do not apply to those

sections when you distribute them as separate works. But when you

distribute the same sections as part of a whole which is a work based

on the Program, the distribution of the whole must be on the terms of

this License, whose permissions for other licensees extend to the

entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest

your rights to work written entirely by you; rather, the intent is to

exercise the right to control the distribution of derivative or

collective works based on the Program.

In addition, mere aggregation of another work not based on the Program

with the Program (or with a work based on the Program) on a volume of

a storage or distribution medium does not bring the other work under

the scope of this License.

3. You may copy and distribute the Program (or a work based on it,

under Section 2) in object code or executable form under the terms of

Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable

source code, which must be distributed under the terms of Sections

1 and 2 above on a medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three

years, to give any third party, for a charge no more than your

cost of physically performing source distribution, a complete

machine-readable copy of the corresponding source code, to be

distributed under the terms of Sections 1 and 2 above on a medium

customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer

to distribute corresponding source code. (This alternative is

allowed only for noncommercial distribution and only if you

received the program in object code or executable form with such

an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for

making modifications to it. For an executable work, complete source

code means all the source code for all modules it contains, plus any

associated interface definition files, plus the scripts used to
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control compilation and installation of the executable. However, as a

special exception, the source code distributed need not include

anything that is normally distributed (in either source or binary

form) with the major components (compiler, kernel, and so on) of the

operating system on which the executable runs, unless that component

itself accompanies the executable.

If distribution of executable or object code is made by offering

access to copy from a designated place, then offering equivalent

access to copy the source code from the same place counts as

distribution of the source code, even though third parties are not

compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program

except as expressly provided under this License. Any attempt

otherwise to copy, modify, sublicense or distribute the Program is

void, and will automatically terminate your rights under this License.

However, parties who have received copies, or rights, from you under

this License will not have their licenses terminated so long as such

parties remain in full compliance.

5. You are not required to accept this License, since you have not

signed it. However, nothing else grants you permission to modify or

distribute the Program or its derivative works. These actions are

prohibited by law if you do not accept this License. Therefore, by

modifying or distributing the Program (or any work based on the

Program), you indicate your acceptance of this License to do so, and

all its terms and conditions for copying, distributing or modifying

the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the

Program), the recipient automatically receives a license from the

original licensor to copy, distribute or modify the Program subject to

these terms and conditions. You may not impose any further

restrictions on the recipients’ exercise of the rights granted herein.

You are not responsible for enforcing compliance by third parties to

this License.

7. If, as a consequence of a court judgment or allegation of patent

infringement or for any other reason (not limited to patent issues),

conditions are imposed on you (whether by court order, agreement or

otherwise) that contradict the conditions of this License, they do not

excuse you from the conditions of this License. If you cannot

distribute so as to satisfy simultaneously your obligations under this

License and any other pertinent obligations, then as a consequence you
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may not distribute the Program at all. For example, if a patent

license would not permit royalty-free redistribution of the Program by

all those who receive copies directly or indirectly through you, then

the only way you could satisfy both it and this License would be to

refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under

any particular circumstance, the balance of the section is intended to

apply and the section as a whole is intended to apply in other

circumstances.

It is not the purpose of this section to induce you to infringe any

patents or other property right claims or to contest validity of any

such claims; this section has the sole purpose of protecting the

integrity of the free software distribution system, which is

implemented by public license practices. Many people have made

generous contributions to the wide range of software distributed

through that system in reliance on consistent application of that

system; it is up to the author/donor to decide if he or she is willing

to distribute software through any other system and a licensee cannot

impose that choice.

This section is intended to make thoroughly clear what is believed to

be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in

certain countries either by patents or by copyrighted interfaces, the

original copyright holder who places the Program under this License

may add an explicit geographical distribution limitation excluding

those countries, so that distribution is permitted only in or among

countries not thus excluded. In such case, this License incorporates

the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions

of the General Public License from time to time. Such new versions will

be similar in spirit to the present version, but may differ in detail to

address new problems or concerns.

Each version is given a distinguishing version number. If the Program

specifies a version number of this License which applies to it and "any

later version", you have the option of following the terms and conditions

either of that version or of any later version published by the Free

Software Foundation. If the Program does not specify a version number of

this License, you may choose any version ever published by the Free Software

Foundation.

96



FFC User Manual Anders Logg

10. If you wish to incorporate parts of the Program into other free

programs whose distribution conditions are different, write to the author

to ask for permission. For software which is copyrighted by the Free

Software Foundation, write to the Free Software Foundation; we sometimes

make exceptions for this. Our decision will be guided by the two goals

of preserving the free status of all derivatives of our free software and

of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY

FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN

OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES

PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS

TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE

PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,

REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING

WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR

REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,

INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING

OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED

TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY

YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER

PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE

POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS
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exterior facet integral, 42
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