DOLFIN User Manual

September 23, 2003

Hoffman, Logg, et al.




This manual has been written by:
Johan Hoffman, Johan Jansson, and Anders Logg.



DOLFIN User Manual

Contents




DOLFIN User Manual

1 Introduction

This is a first draft for a DOLFIN manual. Contributions are most welcome.




DOLFIN User Manual

2 Installation

In preparation.




DOLFIN User Manual

3 Linear algebra

In preparation.




DOLFIN User Manual

4 Grid management

In preparation.




DOLFIN User Manual

5 The log system

The purpose of the log system is to provide a simple and clean interface for
logging messages, including warnings and errors.

The following functions / macros are provided for logging:

dolfin_info();
dolfin_debug();
dolfin_warning();
dolfin_error();
dolfin_assert();

Examples of usage:

dolfin_info("Created vector of size %d.", x.size());
dolfin_debug("Opened file");

dolfin_warning("Unknown cell type.");
dolfin_error("Out of memory.");

dolfin_assert(i < m);

Note that in order to pass additional arguments to the last three func-
tions (which are really macros, in order to automatically print informa-
tion about file names, line numbers and function names), the variations
dolfin debugl (), dolfin debug2() and so on, must be used.

As an alternative to dolfin_info (), C++ style output to cout (dolfin: : cout,
and not std::cout) can be used. These messages will be delivered to the
same destination as messages by use of the function dolfin info().

Examples of usage:

cout << "Assembling matrix: " << A << endl;
cout << "Refining grid: " << grid << endl;




DOLFIN User Manual

The dolfin assert () macro should be used for simple tests that may occur
often, such as checking indexing in vectors. The check is turned on only if

DEBUG is defined.
To notify progress by a progress session, use the class Progress.

Examples of usage:

Progress p("Assembling", grid.noCells());
for (Celllterator c(grid); !c.end(); ++c) {
p++;
}
Progress also supports the following usage:
=1i; // Specify step number

= 0.5; // Specify percentage
p.update(t/T, "Time is t = %f", t);

ol
| [




DOLFIN User Manual

6 Handling parameters

In preparation.

10



DOLFIN User Manual

7 Writing a new module / solver

In preparation.

7.1 Contributing code to DOLFIN

If you have created a new module, fixed a bug somewhere, or have done
a small change somewhere which you want to contribute to DOLFIN, then
currently the best way to do so is to send a patch to the maintainer. A patch
is a file which describes how to transform one file or directory structure into
another. The patch is built by comparing a version which both parties have
against the modified version which only you have.

The tool used to create a patch is called diff and the tool used to apply the
patch is called patch. These tools are free software and standard in most
UNIX-style operating systems.

7.1.1 Creating a patch

Example:

Let’s say you have started from the DOLFIN release 0.3.10. You have a
directory structure under dolfin-0.3.10 where you have made some mod-
ifications to some files which you think could be useful to other DOLFIN
users.

1. Clean up your modified directory structure to remove temporary and
binary files which will be rebuilt anyway:

$ make clean

2. Rename the directory to something else:

$ mv dolfin-0.3.10 dolfin-0.3.10mod

11



DOLFIN User Manual

3. Unpack the version of DOLFIN which you started from:
$ tar xzvf dolfin-0.3.10.tgz

4. You should now have two DOLFIN directory structures in your current
directory:

$ 1s
dolfin-0.3.10
dolfin-0.3.10mod

5. Use the diff tool to create the patch:

$ diff -u ——new-file —-recursive dolfin-0.3.10 dolfin-0.3.10mod >
mypatch.patch

“~u” means “unified”, a format in which to describe the patch.

“—-new-file” accepts the creation of new files in addition to modifi-
cations.

“—-recursive” means to recursively compare files through the direc-
tory structure.

6. The patch now exists as mypatch.patch and can be distributed to other
people who have dolfin-0.3.10 to easily create your modified version. If
the patch is large, compressing it with for example gzip is advisable.

A patch can also be created relative to a CVS version of DOLFIN. Make sure
to notify receivers of the patch exactly which CVS version it is however (date
and time of checkout should suffice), since the patch should be applied to the
same version used to build it. Patching is possible against a different source,
but conflicts can arise, and even though there are heuristics which take care
of most simple cases, the heuristics can fail, and there can be conflicts which
are theoretically impossible to resolve.

12



DOLFIN User Manual

7.1.2 Applying a patch

Example:

Let’s say the patch has been built relative to DOLFIN release 0.3.10.

1. Unpack the version of DOLFIN which the patch is built relative to:
$ tar xzvf dolfin-0.3.10.tgz

2. Check that you have the patch mypatch.patch and the DOLFIN di-
rectory structure in the current directory.

$ 1s
dolfin-0.3.10
mypatch.patch

3. Enter the DOLFIN directory structure:
$ cd dolfin-0.3.10

4. Apply the patch:
$ patch -pl < ../mypatch.patch

“—p1” strips the leading directory from the filename references in the
patch, to match the fact that we are applying the patch from inside
the directory.

5. The modified version now exists as dolfin-0.3.10

13



