Actual source code: epsimpl.h
slepc-3.5.2 2014-10-10
1: /*
2: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3: SLEPc - Scalable Library for Eigenvalue Problem Computations
4: Copyright (c) 2002-2014, Universitat Politecnica de Valencia, Spain
6: This file is part of SLEPc.
8: SLEPc is free software: you can redistribute it and/or modify it under the
9: terms of version 3 of the GNU Lesser General Public License as published by
10: the Free Software Foundation.
12: SLEPc is distributed in the hope that it will be useful, but WITHOUT ANY
13: WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
14: FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
15: more details.
17: You should have received a copy of the GNU Lesser General Public License
18: along with SLEPc. If not, see <http://www.gnu.org/licenses/>.
19: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
20: */
22: #if !defined(_EPSIMPL)
23: #define _EPSIMPL
25: #include <slepceps.h>
26: #include <slepc-private/slepcimpl.h>
28: PETSC_EXTERN PetscLogEvent EPS_SetUp,EPS_Solve;
30: typedef struct _EPSOps *EPSOps;
32: struct _EPSOps {
33: PetscErrorCode (*solve)(EPS);
34: PetscErrorCode (*setup)(EPS);
35: PetscErrorCode (*setfromoptions)(EPS);
36: PetscErrorCode (*publishoptions)(EPS);
37: PetscErrorCode (*destroy)(EPS);
38: PetscErrorCode (*reset)(EPS);
39: PetscErrorCode (*view)(EPS,PetscViewer);
40: PetscErrorCode (*backtransform)(EPS);
41: PetscErrorCode (*computevectors)(EPS);
42: };
44: /*
45: Maximum number of monitors you can run with a single EPS
46: */
47: #define MAXEPSMONITORS 5
49: typedef enum { EPS_STATE_INITIAL,
50: EPS_STATE_SETUP,
51: EPS_STATE_SOLVED,
52: EPS_STATE_EIGENVECTORS } EPSStateType;
54: /*
55: Defines the EPS data structure.
56: */
57: struct _p_EPS {
58: PETSCHEADER(struct _EPSOps);
59: /*------------------------- User parameters ---------------------------*/
60: PetscInt max_it; /* maximum number of iterations */
61: PetscInt nev; /* number of eigenvalues to compute */
62: PetscInt ncv; /* number of basis vectors */
63: PetscInt mpd; /* maximum dimension of projected problem */
64: PetscInt nini; /* number of initial vectors (negative means not copied yet) */
65: PetscInt nds; /* number of basis vectors of deflation space */
66: PetscScalar target; /* target value */
67: PetscReal tol; /* tolerance */
68: EPSConv conv; /* convergence test */
69: EPSWhich which; /* which part of the spectrum to be sought */
70: PetscReal inta,intb; /* interval [a,b] for spectrum slicing */
71: EPSProblemType problem_type; /* which kind of problem to be solved */
72: EPSExtraction extraction; /* which kind of extraction to be applied */
73: EPSBalance balance; /* the balancing method */
74: PetscInt balance_its; /* number of iterations of the balancing method */
75: PetscReal balance_cutoff; /* cutoff value for balancing */
76: PetscBool trueres; /* whether the true residual norm must be computed */
77: PetscBool trackall; /* whether all the residuals must be computed */
79: /*-------------- User-provided functions and contexts -----------------*/
80: PetscErrorCode (*converged)(EPS,PetscScalar,PetscScalar,PetscReal,PetscReal*,void*);
81: PetscErrorCode (*convergeddestroy)(void*);
82: PetscErrorCode (*arbitrary)(PetscScalar,PetscScalar,Vec,Vec,PetscScalar*,PetscScalar*,void*);
83: void *convergedctx;
84: void *arbitraryctx;
85: PetscErrorCode (*monitor[MAXEPSMONITORS])(EPS,PetscInt,PetscInt,PetscScalar*,PetscScalar*,PetscReal*,PetscInt,void*);
86: PetscErrorCode (*monitordestroy[MAXEPSMONITORS])(void**);
87: void *monitorcontext[MAXEPSMONITORS];
88: PetscInt numbermonitors;
90: /*----------------- Child objects and working data -------------------*/
91: ST st; /* spectral transformation object */
92: DS ds; /* direct solver object */
93: BV V; /* set of basis vectors and computed eigenvectors */
94: RG rg; /* optional region for filtering */
95: PetscRandom rand; /* random number generator */
96: SlepcSC sc; /* sorting criterion data */
97: Vec D; /* diagonal matrix for balancing */
98: Vec *IS; /* references to user-provided initial space */
99: Vec *defl; /* references to user-provided deflation space */
100: PetscScalar *eigr,*eigi; /* real and imaginary parts of eigenvalues */
101: PetscReal *errest; /* error estimates */
102: PetscScalar *rr,*ri; /* values computed by user's arbitrary selection function */
103: PetscInt *perm; /* permutation for eigenvalue ordering */
104: PetscInt nwork; /* number of work vectors */
105: Vec *work; /* work vectors */
106: void *data; /* placeholder for solver-specific stuff */
108: /* ----------------------- Status variables --------------------------*/
109: EPSStateType state; /* initial -> setup -> solved -> eigenvectors */
110: PetscInt nconv; /* number of converged eigenvalues */
111: PetscInt its; /* number of iterations so far computed */
112: PetscInt n,nloc; /* problem dimensions (global, local) */
113: PetscReal nrma,nrmb; /* computed matrix norms */
114: PetscBool isgeneralized;
115: PetscBool ispositive;
116: PetscBool ishermitian;
117: EPSConvergedReason reason;
118: };
120: /*
121: Macros to test valid EPS arguments
122: */
123: #if !defined(PETSC_USE_DEBUG)
125: #define EPSCheckSolved(h,arg) do {} while (0)
127: #else
129: #define EPSCheckSolved(h,arg) \
130: do { \
131: if (h->state<EPS_STATE_SOLVED) SETERRQ1(PetscObjectComm((PetscObject)h),PETSC_ERR_ARG_WRONGSTATE,"Must call EPSSolve() first: Parameter #%d",arg); \
132: } while (0)
134: #endif
138: /*
139: EPS_SetInnerProduct - set B matrix for inner product if appropriate.
140: */
141: PETSC_STATIC_INLINE PetscErrorCode EPS_SetInnerProduct(EPS eps)
142: {
144: Mat B;
147: if (!eps->V) { EPSGetBV(eps,&eps->V); }
148: if (eps->ispositive || (eps->isgeneralized && eps->ishermitian)) {
149: STGetBilinearForm(eps->st,&B);
150: BVSetMatrix(eps->V,B,eps->ispositive?PETSC_FALSE:PETSC_TRUE);
151: MatDestroy(&B);
152: } else {
153: BVSetMatrix(eps->V,NULL,PETSC_FALSE);
154: }
155: return(0);
156: }
158: PETSC_INTERN PetscErrorCode EPSSetWhichEigenpairs_Default(EPS);
159: PETSC_INTERN PetscErrorCode EPSSetDimensions_Default(EPS,PetscInt,PetscInt*,PetscInt*);
160: PETSC_INTERN PetscErrorCode EPSBackTransform_Default(EPS);
161: PETSC_INTERN PetscErrorCode EPSComputeVectors_Hermitian(EPS);
162: PETSC_INTERN PetscErrorCode EPSComputeVectors_Schur(EPS);
163: PETSC_INTERN PetscErrorCode EPSComputeVectors_Indefinite(EPS);
164: PETSC_INTERN PetscErrorCode EPSComputeResidualNorm_Private(EPS,PetscScalar,PetscScalar,Vec,Vec,PetscReal*);
165: PETSC_INTERN PetscErrorCode EPSComputeRelativeError_Private(EPS,PetscScalar,PetscScalar,Vec,Vec,PetscReal*);
166: PETSC_INTERN PetscErrorCode EPSComputeRitzVector(EPS,PetscScalar*,PetscScalar*,BV,Vec,Vec);
167: PETSC_INTERN PetscErrorCode EPSGetStartVector(EPS,PetscInt,PetscBool*);
169: /* Private functions of the solver implementations */
171: PETSC_INTERN PetscErrorCode EPSBasicArnoldi(EPS,PetscBool,PetscScalar*,PetscInt,PetscInt,PetscInt*,PetscReal*,PetscBool*);
172: PETSC_INTERN PetscErrorCode EPSDelayedArnoldi(EPS,PetscScalar*,PetscInt,Vec*,PetscInt,PetscInt*,Vec,PetscReal*,PetscBool*);
173: PETSC_INTERN PetscErrorCode EPSDelayedArnoldi1(EPS,PetscScalar*,PetscInt,Vec*,PetscInt,PetscInt*,Vec,PetscReal*,PetscBool*);
174: PETSC_INTERN PetscErrorCode EPSKrylovConvergence(EPS,PetscBool,PetscInt,PetscInt,PetscReal,PetscReal,PetscInt*);
175: PETSC_INTERN PetscErrorCode EPSFullLanczos(EPS,PetscReal*,PetscReal*,PetscInt,PetscInt*,PetscBool*);
176: PETSC_INTERN PetscErrorCode EPSPseudoLanczos(EPS,PetscReal*,PetscReal*,PetscReal*,PetscInt,PetscInt*,PetscBool*,PetscReal*,Vec);
177: PETSC_INTERN PetscErrorCode EPSBuildBalance_Krylov(EPS);
179: #endif