Firedrake: Re-imagining FEniCS by Composing Domain-specific Abstractions

Florian Rathgeber1, Lawrence Mitchell1, David Ham1,2, Michael Lange3, Andrew McRae2, Fabio Luporini1, Gheorghe-teodor Bercea1, Paul Kelly1

1 Department of Computing, Imperial College London 2 Department of Mathematics, Imperial College London 3 Department of Earth Science & Engineering, Imperial College London
The FEniCS Project is a collection of free software for automated, efficient solution of differential equations.

— fenicsproject.org
Firedrake is an automated system for the portable solution of partial differential equations using the finite element method (FEM).

— firedrakeproject.org
Firedrake is an automated system for the portable solution of partial differential equations using the finite element method (FEM).

— firedrakeproject.org

Two-layer abstraction for FEM computation from high-level descriptions:

- Firedrake: a portable finite-element computation framework
 Drive FE computations from a high-level problem specification
- PyOP2: a high-level interface to unstructured mesh based methods
 Efficiently execute kernels over an unstructured grid in parallel
The Firedrake/PyOP2 tool chain

Firedrake Interface
- Geometry, (non)linear solves
- PETSc4py (KSP, SNES, DMPlex)
- PETSc4py (KSP, SNES, DMPlex)
- Meshes, matrices, vectors

Parallel loop
- assembly, compiled expressions

Unified Form Language (UFL)
- Problem definition in FEM weak form
- modified FFC
- Local assembly kernels (AST)
- FIAT

PyOP2 Interface
- data structures (Set, Map, Dat)
- parallel loop
- Parallel loops: kernels executed over mesh
- COFFEE AST optimizer
- Parallel scheduling, code generation

MPI
- Explicitly parallel hardware-specific implementation

CPU (OpenMP/OpenCL)

GPU (PyCUDA/PyOpenCL)

Future arch.
Parallel computations on unstructured meshes with PyOP2
Scientific computations on unstructured meshes

- Independent *local operations* for each element of the mesh described by a *kernel*.
- *Reductions* aggregate contributions from local operations to produce the final result.

PyOP2

A domain-specific language embedded in Python for parallel computations on unstructured meshes or graphs.

Unstructured mesh

```python
PyOP2 Sets:
nodes (9 entities: 0-8)
elements (9 entities: 0-8)

PyOP2 Map elements-nodes:
elem_nodes = [[0, 1, 2], [1, 3, 2], ...]

PyOP2 Dat on nodes:
coords = [..., [.5,.5], [.5,-.25], [1,.25], ...]
```
Scientific computations on unstructured meshes

- Independent *local operations* for each element of the mesh described by a *kernel*.
- *Reductions* aggregate contributions from local operations to produce the final result.

PyOP2

A domain-specific language embedded in Python for parallel computations on unstructured meshes or graphs.

Unstructured mesh

- **PyOP2 Sets:**
 - nodes (9 entities: 0-8)
 - elements (9 entities: 0-8)

- **PyOP2 Map elements-nodes:**
 - elem_nodes = [[0, 1, 2], [1, 3, 2], ...]

- **PyOP2 Dat on nodes:**
 - coords = [..., [.5,.5], [.5,-.25], [1,.25], ...]

PyOP2 Data Model

Mesh topology

- Sets – cells, vertices, etc
- Maps – connectivity between entities in different sets

Data

- Dats – Defined on sets (hold pressure, temperature, etc)

Kernels / parallel loops

- Executed in parallel on a set through a parallel loop
- Read / write / increment data accessed via maps

Linear algebra

- Sparsities defined by mappings
- Matrix data on sparsities
- Kernels compute a local matrix – PyOP2 handles global assembly
PyOP2 Architecture

User code
- Data
- Kernels
- Access Descriptors
- Application code

PyOP2 core
- PyOP2 Lib & Runtime Core
 - colouring, parallel scheduling
- COFFEE AST Optimiser
- Lin. algebra
- PETSc/Cusp

Code generation
- just-in-time (JIT) compile kernels + marshalling code
- PyOpenCL (JIT)
- PyCUDA (JIT)

Backends
- MPI
 - CPU seq.
 - CPU OpenMP
 - OpenCL
 - CUDA
Finite-element computations with Firedrake
Firedrake vs. DOLFIN/FEniCS tool chains

Firedrake Interface
- Geometry, (non)linear solves
- PETSc4py (KSP, SNES, DMPlex)
- Meshes, matrices, vectors
- data structures (Set, Map, Dat)
- Parallel scheduling, code generation
- MPI
- CPU (OpenMP/OpenCL)
- GPU (PyCUDA/PyOpenCL)
- Future arch.

parallel loop
- assembly, compiled expressions
- modified FFC
- Local assembly kernels (AST)
- Parallel loops: kernels executed over mesh
- Explicitly parallel hardware-specific implementation

Unified Form Language (UFL)
- Problem definition in FEM weak form
- FIAT
- COFFEE AST optimizer

PyOP2 Interface
- Explicitly parallel hardware-specific implementation

DOLFIN C++ lib
- PETSc (KSP, SNES)
- PETSc4py (KSP, SNES, DMPlex)

parallel loop
- problem definition in FEM weak form
- Local assembly kernels (C++)

FFC Form Compiler
- FIAT

Unified Form Language (UFL)

Python Interface
- Problem definition in FEM weak form
- SWIG
- FFC Form Compiler
- FIAT

Unified Form Language (UFL)

C++

MPI
- CPU (OpenMP)

Future arch.

GPU

Future arch.

CPU (OpenMP)
Function
Field defined on a set of degrees of freedom (DoFs), data stored as PyOP2 Dat

FunctionSpace
Characterized by a family and degree of FE basis functions, defines DOFs for function and relationship to mesh entities

Mesh
Defines abstract topology by sets of entities and maps between them (PyOP2 data structures)
Driving Finite-element Computations in Firedrake

Solving the Helmholtz equation in Python using Firedrake:

\[
\int_{\Omega} \nabla v \cdot \nabla u - \lambda vu \, dV = \int_{\Omega} vf \, dV
\]

```python
from firedrake import *

# Read a mesh and define a function space
mesh = Mesh('filename')
V = FunctionSpace(mesh, "Lagrange", 1)

# Define forcing function for right-hand side
f = Expression("-(lmbda + 2*(n**2)*pi**2) * sin(X[0]*pi*n) * sin(X[1]*pi*n)",
               lmbda=1, n=8)

# Set up the Finite-element weak forms
u = TrialFunction(V)
v = TestFunction(V)

lmbda = 1
a = (dot(grad(v), grad(u)) - lmbda * v * u) * dx
L = v * f * dx

# Solve the resulting finite-element equation
p = Function(V)
solve(a == L, p)
```
Behind the scenes of the solve call

- Firedrake always solves nonlinear problems in residual form $F(u; v) = 0$
- Transform linear problem into residual form:

 \[
 J = a \\
 F = \text{ufl.action}(J, u) - L
 \]

 ○ Jacobian known to be a
 ○ **Always** solved in a single Newton (nonlinear) iteration
- Use Newton-like methods from PETSc SNES
- PETSc SNES requires two callbacks to evaluate residual and Jacobian:
 ○ evaluate residual by assembling residual form

  ```
  assemble(F, tensor=F_tensor)
  ```

 ○ evaluate Jacobian by assembling Jacobian form

  ```
  assemble(J, tensor=J_tensor, bcs=bcs)
  ```
Applying boundary conditions

- Always preserve symmetry of the operator
- Avoid costly search of CSR structure to zero rows/columns
- Zeroing during assembly, but requires boundary DOFs:
 - negative row/column indices for boundary DOFs during addto
 - instructs PETSc to drop entry, leaving 0 in assembled matrix
Applying boundary conditions

- Always preserve symmetry of the operator
- Avoid costly search of CSR structure to zero rows/columns
- Zeroing during assembly, but requires boundary DOFs:
 - negative row/column indices for boundary DOFs during addto
 - instructs PETSc to drop entry, leaving 0 in assembled matrix

Preassembly

\[
A = \text{assemble}(a) \\
b = \text{assemble}(L) \\
solve(A, p, b, bcs=bcs)
\]
Applying boundary conditions

- Always preserve symmetry of the operator
- Avoid costly search of CSR structure to zero rows/columns
- Zeroing during assembly, but requires boundary DOFs:
 - negative row/column indices for boundary DOFs during addto
 - instructs PETSc to drop entry, leaving 0 in assembled matrix

Preassembly

```python
A = assemble(a)  # A unassembled, A.thunk(bcs) not yet called
b = assemble(L)
solve(A, p, b, bcs=bc)
```
Applying boundary conditions

- Always preserve symmetry of the operator
- Avoid costly search of CSR structure to zero rows/columns
- Zeroing during assembly, but requires boundary DOFs:
 - negative row/column indices for boundary DOFs during addto
 - instructs PETSc to drop entry, leaving 0 in assembled matrix

Preassembly

```
A = assemble(a)  # A unassembled, A.thunk(bcs) not yet called
b = assemble(L)
solve(A, p, b, bcs=bc)  # A.thunk(bcs) called, A assembled
```
Applying boundary conditions

- Always preserve symmetry of the operator
- Avoid costly search of CSR structure to zero rows/columns
- Zeroing during assembly, but requires boundary DOFs:
 - negative row/column indices for boundary DOFs during addto
 - instructs PETSc to drop entry, leaving 0 in assembled matrix

Preassembly

```
A = assemble(a)  # A unassembled, A.thunk(bcs) not yet called
b = assemble(L)
solve(A, p, b, bcs=bcs)  # A.thunk(bcs) called, A assembled
# ...
solve(A, p, b, bcs=bcs)  # bcs consistent, no need to reassemble
```
Applying boundary conditions

- Always preserve symmetry of the operator
- Avoid costly search of CSR structure to zero rows/columns
- Zeroing during assembly, but requires boundary DOFs:
 - negative row/column indices for boundary DOFs during addto
 - instructs PETSc to drop entry, leaving 0 in assembled matrix

Preassembly

\[
A = \text{assemble}(a) \quad \# \text{ A unassembled, } A.\text{thunk}(\text{bcgs}) \text{ not yet called}
\]
\[
b = \text{assemble}(L)
\]
\[
solve(A, p, b, \text{bcgs}=\text{bcgs}) \quad \# \text{ A.thunk(\text{bcgs}) called, A assembled}
\]
\[
\# \ldots
\]
\[
solve(A, p, b, \text{bcgs}=\text{bcgs}) \quad \# \text{ bcgs consistent, no need to reassemble}
\]
\[
\# \ldots
\]
\[
solve(A, p, b, \text{bcgs}=\text{bcgs2}) \quad \# \text{ bcgs differ, reassemble, call A.thunk(\text{bcgs2})}
\]
Benchmarks

Hardware
- Intel Xeon E5-2620 @ 2.00GHz (Sandy Bridge)
- 16GB RAM

Compilers
- Intel Compilers 14.0.1
- Intel MPI 3.1.038
- Compiler flags: -O3 -xAVX

Software
- DOLFIN 389e0269 (April 4 2014)
- Firedrake 570d999 (May 13 2014)
- PyOP2 e775c5e (May 9 2014)

Problem setup
- DOLFIN + Firedrake: RCM mesh reordering enabled
- DOLFIN: quadrature with optimisations enabled
- Firedrake: quadrature with COFFEE loop-invariant code motion enabled
V = FunctionSpace(mesh, "Lagrange", degree)

Dirichlet BC for x = 0 and x = 1
bc = DirichletBC(V, 0.0, [3, 4])

Test, trial and coefficient functions
u = TrialFunction(V)
v = TestFunction(V)
f = Function(V).interpolate(Expression("10*exp(-(pow(x[0] - 0.5, 2) + \ pow(x[1] - 0.5, 2)) / 0.02)"))
g = Function(V).interpolate(Expression("sin(5*x[0])"))

Bilinear and linear forms
a = inner(grad(u), grad(v))*dx
L = f*v*dx + g*v*ds

Pre-assemble and solve
u = Function(V)
A = assemble(a, bcs=bc)
b = assemble(L)
bc.apply(b)
solve(A, u, b, solver_parameters=params)
Poisson (single core, 3D, polynomial degree 3)

Solid: Firedrake, dashed: DOLFIN
Poisson (single node, 3D, polynomial degree 3, mesh size 35**3)

- **time [sec]** vs **Number of processors**

Legend:
- solid: Firedrake, dashed: DOLFIN
- matrix assembly, Firedrake
- rhs assembly, Firedrake
- solve, Firedrake
- matrix assembly, DOLFIN
- rhs assembly, DOLFIN
- solve, DOLFIN
Poisson (single node, 3D, polynomial degree 3, mesh size 35**3)

- **solid**: Firedrake
- **dashed**: DOLFIN

Graph showing speedup relative to DOLFIN on 1 core against number of processors.
Incompressible Navier-Stokes benchmark (Chorin's method)

preassembled system

Solver

- GMRES for tentative velocity + velocity correction
- CG for pressure correction

Preconditioner

- block-Jacobi
- ILU block preconditioner

V = VectorFunctionSpace(mesh, "Lagrange", 2)
Q = FunctionSpace(mesh, "Lagrange", 1)

u, p = TrialFunction(V), TrialFunction(Q)
v, q = TestFunction(V), TestFunction(Q)

dt = 0.01
nu = 0.01
p_in = Constant(0.0)

noslip = DirichletBC(V, Constant((0.0, 0.0)), (1, 3, 4, 6))
inflow = DirichletBC(Q, p_in, 5)
outflow = DirichletBC(Q, 0, 2)
bcu = [noslip]
bcp = [inflow, outflow]

u0, u1, p1 = Function(V), Function(V), Function(Q)
k = Constant(dt)
f = Constant((0, 0))

Tentative velocity step
F1 = (1/k)*inner(u - u0, v)*dx + inner(grad(u0)*u0, v)*dx +
nu*inner(grad(u), grad(v))*dx - inner(f, v)*dx
a1, L1 = lhs(F1), rhs(F1)

Pressure update
a2 = inner(grad(p), grad(q))*dx
L2 = -(1/k)*div(u1)*q*dx

Velocity update
a3 = inner(u, v)*dx
L3 = inner(u1, v)*dx - k*inner(grad(p1), v)*dx
Navier-Stokes RHS (single core, 2D, P2-P1 discretisation)

- solid: Firedrake, dashed: DOLFIN

Axes:
- x-axis: mesh size (cells)
- y-axis: time [sec]
Navier-Stokes solve (single core, 2D, P2-P1 discretisation)

- Tentative velocity solve, Firedrake
- Pressure correction solve, Firedrake
- Velocity correction solve, Firedrake
- Tentative velocity solve, DOLFIN
- Pressure correction solve, DOLFIN
- Velocity correction solve, DOLFIN

- Solid: Firedrake, Dashed: DOLFIN
Navier-Stokes RHS (single node, 2D, P2-P1 discretisation, mesh scaling: 0.2)

Number of processors vs. time [sec]

- solid: Firedrake, dashed: DOLFIN

Legend:
- ▲ triangle: tentative velocity RHS, Firedrake
- ■ square: pressure correction RHS, Firedrake
- ▼ triangle: velocity correction RHS, Firedrake
- ▲ triangle: tentative velocity RHS, DOLFIN
- ■ square: pressure correction RHS, DOLFIN
- ▼ triangle: velocity correction RHS, DOLFIN
Navyer-Stokes solve (single node, 2D, P2-P1 discretisation, mesh scaling: 0.2)

Speedup relative to DOLFIN on 1 core

Number of processors

solid: Firedrake, dashed: DOLFIN
Summary and additional features

Summary

- Two-layer abstraction for FEM computation from high-level descriptions
 - Firedrake: a performance-portable finite-element computation framework
 Drive FE computations from a high-level problem specification
 - PyOP2: a high-level interface to unstructured mesh based methods
 Efficiently execute kernels over an unstructured grid in parallel
- Decoupling of Firedrake (FEM) and PyOP2 (parallelisation) layers
- Firedrake concepts implemented with PyOP2/PETSc constructs
- Portability for unstructured mesh applications: FEM, non-FEM or combinations
- Extensible framework beyond FEM computations (e.g. image processing)
Summary and additional features

Summary

- Two-layer abstraction for FEM computation from high-level descriptions
 - Firedrake: a performance-portable finite-element computation framework
 Drive FE computations from a high-level problem specification
 - PyOP2: a high-level interface to unstructured mesh based methods
 Efficiently execute kernels over an unstructured grid in parallel
- Decoupling of Firedrake (FEM) and PyOP2 (parallelisation) layers
- Firedrake concepts implemented with PyOP2/PETSc constructs
- Portability for unstructured mesh applications: FEM, non-FEM or combinations
- Extensible framework beyond FEM computations (e.g. image processing)

Preview: Firedrake features not covered

- Automatic optimization of generated assembly kernels with COFFEE (Fabio's talk)
- Solving PDEs on extruded (semi-structured) meshes (Doru + Andrew's talk)
- Building meshes using PETSc DMProx
- Using fieldsplit preconditioners for mixed problems
- Solving PDEs on immersed manifolds
- ...
Thank you!

Contact: Florian Rathgeber, @frathgeber, f.rathgeber@imperial.ac.uk

Resources

- **PyOP2** https://github.com/OP2/PyOP2
- **Firedrake** https://github.com/firedrakeproject/firedrake
- **UFL** https://bitbucket.org/mapdes/ufl
- **FFC** https://bitbucket.org/mapdes/ffc

This talk is available at http://kynan.github.io/fenics14 (source)

Slides created with remark