PREPRINT 2005–05

A Compiler for Variational Forms

Robert C. Kirby and Anders Logg
A Compiler for Variational Forms

Robert C. Kirby and Anders Logg
A Compiler for Variational Forms
Robert C. Kirby and Anders Logg
NO 2005–05
ISSN 1404–4382

Chalmers Finite Element Center
Chalmers University of Technology
SE–412 96 Göteborg
Sweden
Telephone: +46 (0)31 772 1000
Fax: +46 (0)31 772 3595
www.phi.chalmers.se

Printed in Sweden
Chalmers University of Technology
Göteborg, Sweden 2005
A COMPILER FOR VARIATIONAL FORMS

ROBERT C. KIRBY AND ANDERS LOGG

ABSTRACT. As a key step towards a complete automation of the finite element method, we present a new algorithm for automatic and efficient evaluation of multilinear variational forms. The algorithm has been implemented in the form of a compiler, the FEniCS Form Compiler FFC. We present benchmark results for a series of standard variational forms, including the incompressible Navier–Stokes equations and linear elasticity. The speedup compared to the standard quadrature-based approach is impressive; in some cases the speedup is as large as a factor 1000.

1. INTRODUCTION

The finite element method provides a general mathematical framework for the solution of differential equations and can be viewed as a machine that automates the discretization of differential equations; given the variational formulation of a differential equation, the finite element method generates a discrete system of equations for the approximate solution.

This generality of the finite element method is seldom reflected in codes, which are often very specialized and can only solve one particular differential equation or a small set of differential equations.

There are two major reasons that the finite element method has yet to be fully automated; the first is the complexity of the task itself, and the second is that specialized codes often outperform general codes. We address both these concerns in this paper.

A basic task of the finite element method is the computation of the element stiffness matrix from a bilinear form on a local element. In many applications, computation of element stiffness matrices accounts for a substantial part of the total run-time of the code. This routine is a small amount of code, but it can be tedious to get it both correct and efficient. While the standard quadrature-based approach to computing the element stiffness matrix works on very general variational forms, it is well-known that precomputing certain quantities in multilinear forms can improve the efficiency of building finite element matrices.
The methods discussed in this paper for efficient computation of element stiffness matrices are based on ideas previously presented in [27, 28], where the basic idea is to represent the element stiffness matrix as a tensor product. A similar approach has been implemented earlier in the finite element library DOLFIN [21, 22], but only for linear elements. The current paper generalizes and formalizes these ideas and presents an algorithm for generation of the tensor representation of element stiffness matrices and for evaluation of the tensor product. This algorithm has been implemented in the form of the compiler FFC for variational forms; the compiler takes as input a variational form in mathematical notation and automatically generates efficient code (C or C++) for computation of element stiffness matrices and their insertion into a global sparse matrix. This includes the generation of code both for the computation of element stiffness matrices and local-to-global mappings of degrees of freedom.

1.1. FEniCS and the Automation of CMM. FFC, the FEniCS Form Compiler, is a central component of FEniCS [20], a project for the Automation of Computational Mathematical Modeling (ACMM). The central task of ACMM, as formulated in [30], is to create a machine that takes as input a model $Au = f$, a tolerance $TOL > 0$ and a norm $\| \cdot \|$ (or some other measure of quality), and produces as output an approximate solution $U \approx u$ that satisfies the accuracy requirement $\|U - u\| < TOL$ using a minimal amount of work (see Figure 1). This includes an aspect of reliability (the produced solution should satisfy the accuracy requirement) and an aspect of efficiency (the solution should be obtained with minimal work).

\[Au = f \longrightarrow U \approx u \]
\[TOL > 0 \longrightarrow \]

Figure 1. The Automation of Computational Mathematical Modeling.

In many applications, several competing models are under consideration, and one would like to computationally compare them. Developing separate, special purpose codes for each model is prohibitive. Hence, a key step of ACMM is the automation of discretization, i.e., the automatic translation of a differential equation into a discrete system of equations, and as noted above this key step is automated by the finite element method. The FEniCS Form Compiler FFC may then be viewed as an important step towards the automation of the finite element method, and thus as an important step towards the Automation of CMM.

FEniCS software is free software. In particular, FFC is licensed under the GNU General Public License [19]. All FEniCS software is available for download on the FEniCS website [20]. In Section 5.6, we return return to a discussion of the different components of FEniCS and their relation to FFC.
1.2. **Current finite element software.** Several emerging projects seek to automate important aspects of the finite element method. By developing libraries in existing languages or new domain-specific languages, software tools may be built that allow programmers to define variational forms and other parts of a finite element method with succinct, mathematical syntax. Existing C++ libraries for finite elements include DOLFIN [21, 22], Sundance [31, 32] and deal.II [6]. Projects developing domain-specific languages for finite element computation include FreeFEM [34] and GetDP [14]. A precursor to the FEniCS project, Analysa [2], was a Scheme-like language for finite element methods.

While these tools are effective at exploiting modern software engineering to produce workable systems, we believe that additional mathematical insight will lead to even more powerful codes with more general approximating spaces and more powerful algorithms.

1.3. **Design goals.** The primary design goal for FFC is to accept as input “any” multilinear variational form and “any” finite element, and to generate code that will run with close to optimal performance. We will make precise below in Section 3.2 which forms and which elements the compiler can handle.

A secondary goal for FFC is to create a new standard in form evaluation; hopefully FFC can become a standard tool for practitioners solving partial differential equations using the finite element method.

The primary output target of FFC is the C++ library DOLFIN. By default, FFC accepts as input a variational form and generates code for the evaluation of the variational form in DOLFIN, as illustrated in Figure 2. Although FFC is tightly integrated with other components of the FEniCS project, such as DOLFIN, it has been designed to allow for easy adoption to other systems.

Figure 2. The form compiler FFC takes as input a variational form and generates code for evaluation of the form.

1.4. **The compiler approach.** It is widely accepted in developing software for scientific computing that there is a trade-off between generality and efficiency; a software component that is general in nature, i.e., it accepts a wide range of inputs, is often less efficient than another software component that performs the same job on a more limited set of inputs. As a result, most codes used by practitioners for the solution of differential equations are very specific.

However, by using a compiler approach, it is possible to combine generality and efficiency without loss of generality and without loss of efficiency. This is possible since our compiler works on a very small family of inputs (multilinear variational forms) with sharply defined mathematical properties. Our domain-specific knowledge allows us to generate much better code than if we used general-purpose compiler techniques.
1.5. **Outline of this paper.** Before presenting the main algorithm, we give a short background on the implementation of the finite element method and the evaluation of variational forms in Section 2. The main algorithm is then outlined in Section 3. In Section 4, we compare the complexity of form evaluation for the algorithm used by FFC with the standard quadrature-based approach. We then discuss the implementation of the form compiler in some detail in Section 5.

In Section 6, we compare the CPU time for evaluating a series of standard variational forms using code automatically generated by FFC and hand-coded quadrature-based implementations. The speedup is in all cases significant, in the case of cubic Lagrange elements on tetrahedra a factor 100 (Figure 3).

![Figure 3. Benchmark results for a series of standard variational forms (here compiled for cubic Lagrange elements on tetrahedra).](image)

Finally, in Section 7, we summarize the current features and shortcomings of FFC and give directions for future development and research.

2. **Background**

In this section, we present a quick background on the finite element method. The material is standard [12, 23, 9, 17], but is included here to give a context for the presentation of the form compiler and to summarize the notation used throughout the remainder of this paper.

For simplicity, we consider here only linear partial differential equations and note that these play an important role in the discretization of nonlinear partial differential equations (in Newton or fixed-point iterations).
2.1. Variational forms. We work with the standard variational formulation of a partial differential equation: Find $u \in V$ such that

$$a(v, u) = L(v) \quad \forall v \in \hat{V},$$

with $a : \hat{V} \times V \to \mathbb{R}$ a bilinear form, $L : \hat{V} \to \mathbb{R}$ a linear form, and (\hat{V}, V) a pair of suitable function spaces. For the standard example, Poisson’s equation $-\Delta u(x) = f(x)$ with homogeneous Dirichlet conditions on a domain Ω, the bilinear form a is given by $a(v, u) = \int_\Omega \nabla v(x) \cdot \nabla u(x) \, dx$, the linear form L is given by $L(v) = \int_\Omega v(x) f(x) \, dx$, and $\hat{V} = V = H^1_0(\Omega)$.

The finite element method discretizes (2.1) by replacing (\hat{V}, V) with a pair of (piecewise polynomial) discrete function spaces. With $\{\hat{\varphi}_i\}_{i=1}^M$ a basis for the test space \hat{V} and $\{\varphi_i\}_{i=1}^M$ a basis for the trial space V, we can expand the approximate solution U of (2.1) in the basis functions of V, $U = \sum_{j=1}^M \xi_j \varphi_j$, and obtain a linear system $A \xi = b$ for the degrees of freedom $\{\xi_j\}_{j=1}^M$ of the approximate solution U. The entries of the matrix A and the vector b defining the linear system are given by

$$A_{ij} = a(\hat{\varphi}_i, \varphi_j), \quad i, j = 1, \ldots, M,$$

$$b_i = L(\hat{\varphi}_i), \quad i = 1, \ldots, M.$$

2.2. Assembly. The standard algorithm for computing the matrix A (or the vector b) is assembly: the matrix is computed by iteration over the elements K of a triangulation T of Ω, and the contribution from each local element is added to the global matrix A.

To see this, we note that if the bilinear form a is expressed as an integral over the domain Ω, we can write the bilinear form as a sum of element bilinear forms, $a(v, u) = \sum_{K \in T} a_K(v, u)$, and thus

$$A_{ij} = \sum_{K \in T} a_K(\hat{\varphi}_i, \varphi_j), \quad i, j = 1, \ldots, M.$$

In the case of Poisson’s equation, the element bilinear form a_K is defined by $a(v, u) = \int_K \nabla v(x) \cdot \nabla u(x) \, dx$.

Let now $\{\hat{\varphi}_i^K\}_{i=1}^n$ be the restriction to K of the subset of $\{\hat{\varphi}_i\}_{i=1}^M$ supported on K and $\{\varphi_i^K\}_{i=1}^n$ the corresponding local basis for V. Furthermore, let $i(\cdot, \cdot)$ be a mapping from the local numbering scheme to the global numbering scheme (local-to-global mapping) for the basis functions of \hat{V}, so that $\hat{\varphi}_i^K$ is the restriction to K of $\varphi_{i(K,i)}$, and let $i(K, \cdot)$ be the corresponding mapping for V. We may now express an algorithm for computation of the matrix A (Algorithm 1).

Alternatively, one may define the element matrix A^K by

$$A_{ij}^K = a_K(\hat{\varphi}_i^K, \varphi_j^K) \quad i, j = 1, \ldots, n,$$

and separate the computation on each element K into two steps: computation of the element matrix A^K and insertion of A^K into A (Algorithm 2).
Algorithm 1 \(A = \text{Assemble}(a, \mathcal{T}, \hat{V}, V) \)

\[A = 0 \]

for \(K \in \mathcal{T} \)

\[\text{for } i = 1, \ldots, n \]

\[\text{for } j = 1, \ldots, n \]

\[A_{\hat{\iota}(K,i)\hat{\iota}(K,j)} = A_{\hat{\iota}(K,i)\hat{\iota}(K,j)} + a_K(\hat{\varphi}_i^K, \varphi_j^K) \]

end for

end for

end for

Algorithm 2 \(A = \text{Assemble}(a, \mathcal{T}, \hat{V}, V) \)

\[A = 0 \]

for \(K \in \mathcal{T} \)

Compute \(A^K \) according to (2.4)

Add \(A^K \) to \(A \) using the local-to-global mappings \((\hat{\iota}(K,\cdot), \iota(K,\cdot))\)

end for

Separating the two concerns of computing the element matrix \(A^K \) and adding it to the global matrix \(A \) as in Algorithm 2 has the advantage that one may use an optimized library routine for adding the element matrix \(A^K \) to the global matrix \(A \). Sparse matrix libraries such as PETSc \([4, 3, 5]\) often provide optimized routines for this type of operation. Note that the cost of adding \(A^K \) to \(A \) may be substantial even with an efficient implementation of the sparse data structure for \(A \) \([27]\).

As we shall see below, we may also take advantage of the separation of concerns of Algorithm 2 to optimize the computation of the element matrix \(A^K \). This step is automated by the form compiler FFC. Given a bilinear (or multilinear) form \(a \), FFC automatically generates code for run-time computation of the element matrix \(A^K \).

3. Evaluation of multilinear forms

In this section, we present the algorithm used by FFC to automatically generate efficient code for run-time computation of the element matrix \(A^K \).

3.1. Multilinear forms. Let \(\{V_i\}_{i=1}^r \) be a given set of discrete function spaces defined on a triangulation \(\mathcal{T} \) of \(\Omega \subset \mathbb{R}^d \). We consider a general multilinear form \(a \) defined on the product space \(V_1 \times V_2 \times \cdots \times V_r \):

\[a : V_1 \times V_2 \times \cdots \times V_r \rightarrow \mathbb{R}. \]

Typically, \(r = 1 \) (linear form) or \(r = 2 \) (bilinear form), but the form compiler FFC can handle multilinear forms of arbitrary arity \(r \). Forms of higher arity appear frequently in applications and include variable coefficient diffusion and advection of momentum in the incompressible Navier–Stokes equations.
Let now \(\{ \varphi_i^1 \}_{i=1}^{M_1}, \{ \varphi_i^2 \}_{i=1}^{M_2}, \ldots, \{ \varphi_i^r \}_{i=1}^{M_r} \) be bases of \(V_1, V_2, \ldots, V_r \) and let \(i = (i_1, i_2, \ldots, i_r) \) be a multiindex. The multilinear form \(a \) then defines a rank \(r \) tensor given by
\[
A_i = a(\varphi_{i_1}^1, \varphi_{i_2}^2, \ldots, \varphi_{i_r}^r).
\]
In the case of a bilinear form, the tensor \(A \) is a matrix (the stiffness matrix), and in the case of a linear form, the tensor \(A \) is a vector (the load vector).

As discussed in the previous section, to compute the tensor \(A \) by assembly, we need to compute the element tensor \(A^K \) on each element \(K \) of the triangulation \(T \) of \(\Omega \). Let \(\{ \varphi_i^{K,1} \}_{i=1}^{M_1} \) be the restriction to \(K \) of the subset of \(\{ \varphi_i^1 \}_{i=1}^{M_1} \) supported on \(K \) and define the local bases on \(K \) for \(V_2, \ldots, V_r \) similarly. The rank \(r \) element tensor \(A^K \) is then defined by
\[
A_i^K = a_K(\varphi_{i_1}^{K,1}, \varphi_{i_2}^{K,2}, \ldots, \varphi_{i_r}^{K,r}).
\]

3.2. Evaluation by tensor representation

The element tensor \(A^K \) can be efficiently computed by representing \(A^K \) as a special tensor product. Under some mild assumptions which we shall make precise below, the element tensor \(A^K \) can be represented as the tensor product of a reference tensor \(A^0 \) and a geometry tensor \(G_K \):
\[
A_i^K = A_{i\alpha}^0 G_K^{\alpha},
\]
or more generally a sum \(A_i^K = A_{i\alpha}^{0,k} G_{K,k}^{\alpha} \) of such tensor products, where \(i \) and \(\alpha \) are multiindices and we use the convention that repetition of an index means summation over that index. The rank of the reference tensor is the sum of the rank \(r = |i| \) of the element tensor and the rank \(|\alpha| \) of the geometry tensor \(G_K \). As we shall see, the rank of the geometry tensor depends on the specific form.

Our goal is to develop an algorithm that converts an abstract representation of a multilinear form into (i) the values of the reference tensor \(A^0 \) and (ii) an expression for evaluating the geometry tensor \(G_K \) for any given element \(K \). Note that \(A^0 \) is fixed and independent of the element \(K \) and may thus be precomputed. Only \(G_K \) has to be computed on each element. As we shall see below in Section 4, for a wide range of multilinear forms, this allows for computation of the element tensor \(A^K \) using far fewer floating-point operations than if the element tensor \(A^K \) were computed by quadrature on each element \(K \).

To see how to obtain the tensor representation (3.4), we fix a small set of operations, allowing only multilinear forms that can be expressed through these operations, and observe how the tensor representation (3.4) transforms under these operations. As we shall see below, this covers a wide range of multilinear forms (but not all).

As basic elements, we take the local basis functions \(\{ \varphi_\gamma \} = \bigcup_i \{ \varphi_j^{K,i} \}_{j=1}^{M_i} \) for a set of finite element spaces \(V_i, i = 1, 2, \ldots, \) including the finite element spaces \(V_1, V_2, \ldots, V_r \) on which the multilinear form is defined. Allowing addition \(\varphi_1 + \varphi_2 \) and multiplication with scalars \(\alpha \varphi \), we obtain a vector space \(A \) of linear combinations of basis functions. Since \(\varphi_1 - \varphi_2 = \varphi_1 + (-1) \varphi_2 \) and \(\varphi / \alpha = (1/\alpha) \varphi \), we can easily equip the vector space with subtraction and division by scalars.

We next equip our vector space with multiplication between elements of the vector space. We thus obtain an algebra \(A \) of linear combinations of products of basis functions. Finally,
we extend \(\mathcal{A} \) by adding differentiation \(\partial / \partial x_i \) with respect to a coordinate direction \(x_i \), \(i = 1, \ldots, d \), on \(K \), to obtain

\[
\mathcal{A} = \{ v : v = \sum c(.) \prod \frac{\partial^{(l)}(\cdot)}{\partial x_{(l)}} \},
\]

where \((\cdot) \) represents some multiindex.

To summarize, \(\mathcal{A} \) is the algebra of linear combinations of products of basis functions or derivatives of basis functions that is generated from the set of basis functions through addition (+), subtraction (−), multiplication (·), including multiplication with scalars, division by scalars (/), and differentiation \(\partial / \partial x_i \). Note that if the basis functions are vector-valued (or tensor-valued), the algebra is generated from the set of scalar components of the basis functions.

We may now state precisely the multilinear forms that the form compiler FFC can handle, namely those multilinear forms that can be expressed as integrals over \(K \) (or the boundary of \(K \)) of elements of the algebra \(\mathcal{A} \). Note that not all integrals over \(K \) of elements of \(\mathcal{A} \) are multilinear forms; in particular, each product needs to be linear in each argument of the form.

The tensor representation (3.4) now follows by a standard change of variables using an affine mapping \(F_K : K_0 \rightarrow K \) from a reference element \(K_0 \) to the current element \(K \) (see Figure 4). With \(\{ \Phi_\gamma \}_\gamma \) the basis functions on the reference element corresponding to \(\{ \varphi_\gamma \}_\gamma \), defined by \(\Phi_\gamma = \varphi_\gamma \circ F_K \), we obtain the following representation of the element tensor \(A^K \) corresponding to \(v_i = \left(\sum c(.) \prod \frac{\partial^{(l)}(\cdot)}{\partial x_{(l)}} \right)_i \):

\[
A^K_i = a_i^K(\varphi_{i_1}^{K,1}, \varphi_{i_2}^{K,2}, \ldots, \varphi_{i_r}^{K,r}) = \int_K v_i \, dx
\]

\[
= \left(\int_K \sum c(.) \prod \frac{\partial^{(l)}(\cdot)}{\partial x_{(l)}} \, dx \right)_i = \sum \left(c(.) \int_K \prod \frac{\partial^{(l)}(\cdot)}{\partial x_{(l)}} \, dx \right)_i
\]

\[
= \sum \left(\frac{c(.) \det F'_K}{} \prod \frac{\partial X_{(l)}}{\partial x_{(l)}} \right)_a \left(\int_{K_0} \prod \frac{\partial^{(l)}(\cdot)}{\partial x_{(l)}} \, dX \right)_{ia}
\]

\[
= A_{ia}^{0,k} G_{K,k}^{a},
\]

where

\[
A_{ia}^{0,k} = \left(\int_{K_0} \prod \frac{\partial^{(l)}(\cdot)}{\partial x_{(l)}} \, dX \right)_{ia},
\]

\[
G_{K,k}^{a} = \left(\frac{c(.) \det F'_K}{} \prod \frac{\partial X_{(l)}}{\partial x_{(l)}} \right)_a.
\]

Note that the expression for the geometry tensor \(G_{K,k}^{a} \) implicitly contains a summation if an index is repeated twice. Also note that the geometry tensor contains any variable coefficients appearing in the form.

As we shall see below in Section 5, the representation of a multilinear form as an integral over \(K \) of an element of \(\mathcal{A} \) is automatically available to the form compiler FFC, since a multilinear form must be specified using the basic operations that generate \(\mathcal{A} \).
A COMPILER FOR VARIATIONAL FORMS

3.3. **Test cases.** To make these ideas concrete, we write down the explicit tensor representation (3.4) of the element tensor A^K for a series of standard forms. We return to these test cases below in Section 6 when we present benchmark results for each test case.

Test case 1: the mass matrix. As a first simple example, we consider the computation of the mass matrix M with $M_{i_1i_2} = a(\varphi^1_{i_1}, \varphi^2_{i_2})$ and the bilinear form a given by

$$a(v, u) = \int_{\Omega} v(x)u(x) \, dx.$$

By a change of variables given by the affine mapping $F_K : K_0 \to K$, we obtain

$$A^K_{i} = \int_K \varphi^K_{i_1}(x)\varphi^K_{i_2}(x) \, dx = \det F'_K \int_{K_0} \Phi^1_{i_1}(X)\Phi^1_{i_2}(X) \, dX = A^0_i G_K,$$

where $A^0_i = \int_{K_0} \Phi^1_{i_1}(X)\Phi^1_{i_2}(X) \, dX$ and $G_K = \det F'_K$. In this case, the reference tensor A^0 is a rank two tensor (a matrix) and the geometry tensor G_K is a rank zero tensor (a scalar). By precomputing the reference tensor A^0, we may thus compute the element tensor A^K on each element K by just multiplying the precomputed reference tensor with the determinant of (the derivative of) the affine mapping F_K.

Test case 2: Poisson’s equation. As a second example, consider the bilinear form for Poisson’s equation,

$$a(v, u) = \int_{\Omega} \nabla v(x) \cdot \nabla u(x) \, dx.$$
By a change of variables as above, we obtain the following representation of the element tensor A^K:

$$A^K_i = \int_K \nabla \varphi^K_{i1}(x) \cdot \nabla \varphi^K_{i2}(x) \, dx$$

(3.12)

$$= \det F_K \frac{\partial X_{\alpha_1}}{\partial x_\beta} \frac{\partial X_{\alpha_2}}{\partial x_\beta} \int_{K_0} \frac{\partial \Phi^1_{i1}(X)}{\partial X_{\alpha_1}} \frac{\partial \Phi^2_{i2}(X)}{\partial X_{\alpha_2}} \, dX = A^0_{i\alpha} G^K_\alpha,$$

where $A^0_{i\alpha} = \int_{K_0} \frac{\partial \Phi^1_{i1}(X)}{\partial X_{\alpha_1}} \frac{\partial \Phi^2_{i2}(X)}{\partial X_{\alpha_2}} \, dX$ and $G^K_\alpha = \det F'_K \frac{\partial X_{\alpha_1}}{\partial x_\beta} \frac{\partial X_{\alpha_2}}{\partial x_\beta}$. We see that the reference tensor A^0 is here a rank four tensor and the geometry tensor G^K_α is a rank two tensor (one index for each derivative appearing in the form).

Test case 3: Navier–Stokes. Consider now the nonlinear term $u \cdot \nabla u$ of the incompressible Navier–Stokes equations,

$$\dot{u} + u \cdot \nabla u - \nu \Delta u + \nabla p = f,$$

$$\nabla \cdot u = 0.$$

To solve the Navier–Stokes equations by fixed-point iteration (see for example [18]), we write the nonlinear term in the form $u \cdot \nabla u = w \cdot \nabla u$ with $w = u$ and consider w as fixed. We then obtain the following bilinear form:

$$a(v, u) = a_w(v, u) = \int_\Omega v(x) \cdot (w(x) \cdot \nabla) u(x) \, dx.$$

(3.13)

Note that we may alternatively think of this as a trilinear form, $a = a(v, u, w)$.

Let now $\{w^K_\alpha\}_\alpha$ be the expansion coefficients for w in a finite element basis on the current element K, and let $v[i]$ denote component i of a vector-valued function v. Furthermore, assume that u and w are discretized using the same discrete space $V = V_2$. We then obtain the following representation of the element tensor A^K:

$$A^K_i = \int_K \varphi^K_{i1}(x) \cdot (w(x) \cdot \nabla) \varphi^K_{i2}(x) \, dx$$

(3.14)

$$= \det F_K \frac{\partial X_{\alpha_1}}{\partial x_\beta} w^K_{\alpha_2} \int_{K_0} \Phi^1_{i1}[\alpha](X) \Phi^2_{i2}[\alpha](X) \frac{\partial \Phi^2[\beta](X)}{\partial X_{\alpha_3}} \, dX = A^0_{i\alpha} G^K_\alpha,$$

where $A^0_{i\alpha} = \int_{K_0} \Phi^1_{i1}[\alpha](X) \Phi^2_{i2}[\alpha](X) \frac{\partial \Phi^2[\beta](X)}{\partial X_{\alpha_3}} \, dX$ and $G^K_\alpha = \det F'_K \frac{\partial X_{\alpha_1}}{\partial x_\beta} w^K_{\alpha_2}$. In this case, the reference tensor A^0 is a rank five tensor and the geometry tensor G^K_α is a rank three tensor (one index for the derivative, one for the function w, and one for the scalar product).

Test case 4: linear elasticity. Finally, consider the strain-strain term of linear elasticity,

$$a(v, u) = \int_\Omega \frac{1}{4} (\nabla v + (\nabla v)^T) : (\nabla u + (\nabla u)^T) \, dx$$

(3.15)

$$= \int_\Omega \frac{1}{4} \frac{\partial v_i}{\partial x_i} \frac{\partial u_i}{\partial x_i} \, dx + \frac{1}{4} \frac{\partial v_i}{\partial x_j} \frac{\partial u_i}{\partial x_j} \, dx + \frac{1}{4} \frac{\partial v_j}{\partial x_i} \frac{\partial u_i}{\partial x_j} \, dx + \frac{1}{4} \frac{\partial v_j}{\partial x_i} \frac{\partial u_j}{\partial x_i} \, dx.$$
Note that because of symmetry, the second and third terms may be grouped together. Considering here only the first term, a change of variables leads to the following representation of the element tensor $A^{K,1}$:

$$
A_{i}^{K,1} = \int_{K} \frac{1}{4} \frac{\partial \mathcal{F}^{K,1}_{i1}[\beta_{1}](x)}{\partial x_{\beta_{2}}} \frac{\partial \mathcal{F}^{K,2}_{i2}[\beta_{1}](x)}{\partial x_{\beta_{2}}} \, dx
$$

(3.17)

$$
= \frac{1}{4} \det F_{K}^T \frac{\partial X_{\alpha_{1}}}{\partial x_{\alpha_{1}}} \frac{\partial X_{\alpha_{2}}}{\partial x_{\alpha_{2}}} \int_{K_{0}} \frac{\partial \Phi^{1}_{i1}[\beta_{1}](X)}{\partial X_{\alpha_{1}}} \frac{\partial \Phi^{2}_{i2}[\beta_{1}](X)}{\partial X_{\alpha_{2}}} \, dX = A_{i\alpha}^{0,1} G_{K,1}^{\alpha},
$$

where $A_{i\alpha}^{0,1} = \int_{K_{0}} \frac{\partial \Phi^{1}_{i1}[\beta_{1}](X)}{\partial x_{\alpha_{1}}} \frac{\partial \Phi^{2}_{i2}[\beta_{1}](X)}{\partial x_{\alpha_{2}}} \, dX$ and $G_{K,1}^{\alpha} = \frac{1}{8} \det F_{K} \frac{\partial X_{\alpha_{1}}}{\partial x_{\alpha_{1}}} \frac{\partial X_{\alpha_{2}}}{\partial x_{\alpha_{2}}}$. Here, each reference tensor $A^{0,k}$ is a rank four tensor and each geometry tensor $G_{K,k}^{\alpha}$ is a rank two tensor (one index for each derivative).

3.4. Extensions.

The current version of FFC supports affinely mapping function spaces. It is interesting to consider the generalization of our approach to other kinds of function spaces such as Raviart-Thomas [35] elements for $H(\text{div})$ and curvilinear mappings such as arise in isoparametric elements.

Implementing $H(\text{div})$ or $H(\text{curl})$ elements requires two kinds of generalizations to FFC. First of all, the basis functions are mapped to the reference element by the Piola transform [11] rather than the standard change of coordinates. With $F_{K} : K_{0} \rightarrow K$ the standard affine mapping for an element K, F_{K}^T the Fréchet derivative of the mapping and $\det F_{K}^T$ its determinant, the Piola mapping is defined by $\mathcal{F}_{K}(\Psi) = \frac{1}{\det F_{K}^T} F_{K}^T(\Psi \circ (F_{K})^{-1})$. Since our tools already track Jacobians and determinants for differentiating through affine mappings, it should be straightforward to support the Piola mapping. Second, defining the mapping between local and global degrees of freedom becomes more complicated, as we must contend with the directions of vector components.

As an example of using the Piola transform, we consider the Raviart-Thomas elements of the lowest order with the standard (vector-valued) nodal basis $\{\Psi_{i}\}_{i=1}^{d}$ on the reference element. We compute the mass matrix M with $M_{i1,i2} = a(\psi_{1}, \psi_{2})$ and the bilinear form a given by

$$
a(v, u) = \int_{\Omega} v(x) \cdot u(x) \, dx.
$$

(3.18)

On K, the basis functions are given by $\psi_{i}^{K} = \mathcal{F}_{K}(\Psi_{i})$ and computing the element tensor A^{K}, we obtain

$$
A_{i}^{K} = \int_{K} \psi_{i1}^{K}(x) \cdot \psi_{i2}^{K}(x) \, dx
$$

(3.19)

$$
= \frac{1}{\det F_{K}^T} \frac{\partial x_{\alpha_{1}}}{\partial X_{\alpha_{1}}} \frac{\partial x_{\alpha_{2}}}{\partial X_{\alpha_{2}}} \int_{K_{0}} \Psi_{i1}[\alpha_{1}] \Psi_{i2}[\alpha_{2}] \, dX = A_{i\alpha}^{0} G_{K}^{\alpha},
$$

where $A_{i\alpha}^{0} = \int_{K_{0}} \Psi_{i1}[\alpha_{1}] \Psi_{i2}[\alpha_{2}] \, dX$ and $G_{K}^{\alpha} = \frac{1}{\det F_{K}^T} \frac{\partial x_{\alpha_{1}}}{\partial X_{\alpha_{1}}} \frac{\partial x_{\alpha_{2}}}{\partial X_{\alpha_{2}}}$. We see that, like for Poisson, the reference tensor A^{0} is rank four and the geometry tensor G_{K} is rank two.
The possibility of extending our techniques to isoparametric elements is less obvious. While the Piola mapping is more complicated than the standard affine mapping, it still leads to geometric data that is constant over each cell and can be pulled out of the integrals to set up tensor products. In the case of isoparametric elements, however, F_K varies spatially within a cell. Moreover, the determinant factor often appears in a denominator, leading to a rational function. It is not clear how to proceed, but it may be possible to make suitably accurate polynomial approximations and hence recover the structure of tensor products.

3.5. **Optimization.** We consider here three different kinds of optimization that could be built into FFC in the future. For one, the current code is generated entirely straightline as a sequence of arithmetic and assignment. It should is possible to store the tensor A^0 in a contiguous array. Moreover, each G_K may be considered as a tensor or flattened into a vector. In the latter case, the action of forming the element matrix for one element may be written as a matrix-vector multiply using the level 2 BLAS. Once this observation is made, it is straightforward to see that we could form several G_K vectors and make better use of cache by computing several element matrices at once by a matrix-matrix multiply and the level 3 BLAS.

This corresponds to a coarse-grained optimization. In other work [27, 28], we have seen that for many forms, the entries in A^0 are related in such ways that various entries of the element matrices may be formed in fewer operations. For example, if two entries of A^0 are close together in Hamming distance, then the contraction of one entry with G_K can be computed efficiently from the other. As our code for optimization, FErari, evolves, we will integrate it with FFC as an optimizing backend. It will be simple to compare the output of FErari to the best performance using the BLAS, and let FFC output the best of the two (which may be highly problem-dependent).

Finally, optimizations that arise from the variational form itself will be fruitful to explore in the future. For example, it should be possible to detect when a variational form is symmetric within FFC, as this leads to fewer operations to form the associated matrix. Moreover, for forms over vector-valued elements that have a Cartesian product basis (each basis function has support in only one component), other kinds of optimizations are appropriate. For example, the viscosity operator for Navier-Stokes is the vector Laplacian, which can be written as a block-diagonal matrix with one axis for each spatial dimension. By ”taking apart” the basis functions, we hope to uncover this block structure, which will lead to more efficient compilation and hopefully more efficient code.

4. **Complexity of form evaluation**

We now compare the proposed algorithm based on tensor representation to the standard quadrature-based approach. As we shall see, tensor representation can be much more efficient than quadrature for a wide range of forms.

4.1. **Basic assumptions and notation.** To analyze the complexity of form evaluation, we make the following simplifying assumptions:
• the form is bilinear, i.e., \(r = |i| = 2 \);
• the form can be represented as one tensor product, i.e., \(A^K_i = A_{i\alpha}^0 G^K_{\alpha} \);
• the basis functions are scalar;
• integrals are computed exactly, i.e., the order of the quadrature rule must match the polynomial order of the integrand.

We shall use the following notation: \(q \) is the polynomial order of the basis functions on every element, \(p \) is the total polynomial order of the integrand of the form, \(d \) is the dimension of \(\Omega \), \(n \) is the dimension of the function space on an element, and \(N \) is the number of quadrature points needed to integrate polynomials of degree \(p \) exactly.

Furthermore, let \(n_f \) be the number of functions appearing in the form. For test cases 1–4 above, \(n_f = 0 \) in all cases except test case 3 (Navier–Stokes) where \(n_f = 1 \). We use \(n_D \) to denote the number of differential operators. For test cases 1–4, we have \(n_D = 0 \) in case 1 (the mass matrix), \(n_D = 2 \) in case 2 (Poisson), \(n_D = 1 \) in case 3 (Navier–Stokes), and \(n_D = 2 \) in case 4 (linear elasticity).

4.2. Complexity of tensor representation

The element tensor \(A^K \) has \(n^2 \) entries. The number of basis functions \(n \) for polynomials of degree \(q \) in \(d \) dimensions is \(\sim q^d \). To compute each entry \(A^K_i \) of the element tensor \(A^K \) using tensor representation, we need to compute the tensor product between \(A_{i\alpha}^0 \) and \(G^K_{\alpha} \). The geometry tensor \(G^K \) has rank \(n_f + n_D \) and the number entries of \(G^K \) is \(n_f n_D d^d \). The cost for computing the \(n^2 \) entries of the element tensor \(A^K \) using tensor representation is thus

\[
T_T \sim n^2 n^2 d^d \sim (q^d)^2 (n_f n_D d^d) \sim q^{2d + n_f d} d^{n_D}.
\]

Note that there is no run-time cost associated with computing the tensor representation (3.4), since this is computed at compile-time. Also note that we have not taken into account any of the optimizations discussed in Section 3.5. These optimizations can in some cases significantly reduce the operation count.

4.3. Complexity of quadrature

To compute each entry \(A^K_i \) of the element tensor \(A^K \) using quadrature, we need to evaluate an integrand of total order \(p \) at \(N \) quadrature points. The number of quadrature points needed to integrate polynomials of order \(p \) exactly in \(d \) dimensions is \(N \sim p^d \). Since the form is bilinear with basis functions of order \(q \), the total order is \(p = 2q + n_f q - n_D \). It is difficult to estimate precisely the cost of evaluating the integrand at each quadrature point, but a reasonable estimate is \(n_f + n_D d + 1 \). Note that we assume that all basis functions and their derivatives have been pretabulated at all quadrature points on the reference element.

We thus obtain the following estimate of the total cost for computing the \(n^2 \) entries of the element tensor \(A^K \) using quadrature:

\[
T_Q \sim n^2 N (n_f + n_D d + 1) \sim (q^d)^2 p^d (n_f + n_D d + 1) \sim q^{2d} (2q + n_f q - n_D)^d (n_f + n_D d + 1).
\]
4.4. Tensor representation vs. Quadrature. Comparing tensor representation with quadrature, the speedup of tensor representation is

\[
\frac{T_Q}{T_T} \sim \frac{(2q + n_f q - n_D d)(n_f + n_D d + 1)}{q^n d^d n_D}.
\]

We immediately note that there can be a significant speedup for \(n_f = 0 \), since \(T_T / n^2 \) is then independent of the polynomial degree \(q \). In particular, we note that for the mass matrix (\(n_f = n_D = 0 \)) the speedup is \(T_Q / T_T \sim (2q)^d \), and for Poisson’s equation (\(n_f = 0, n_D = 2 \)) the speedup is \(T_Q / T_T \sim (2q - 2)^d(2d + 1)/d^2 \). As we shall see below, the speedup for test cases 1–4 is significant even for \(q = 0 \).

On the other hand, we note that quadrature may be more efficient if \(n_f \) is large. One may thus imagine an intelligent system that automatically makes the choice between tensor representation and quadrature in each specific situation.

5. Implementation

We now discuss a number of important aspects of the implementation of the form compiler FFC. We also write down the forms for the test cases discussed above in Section 3.3 in the language of the form compiler FFC. Basically, we can consider FFC’s functionality broken into three phases. First, it takes an expression for a multilinear form and generates the tensor \(A^0 \). While doing this, it derives an expression for evaluation of the element tensor \(G_K \) from the affine mapping and the coefficients of the form. Finally, it generates code for evaluating \(G_K \) and contracting it with \(A^0 \), and for constructing the local-to-global mapping.

5.1. Parsing of forms. The form compiler FFC implements a domain-specific language (DSL) for variational forms, using Python as the host language. A language of variational forms is obtained by overloading the appropriate operators, including addition +, subtraction -, multiplication (*), and differentiation \(\cdot dx(\cdot) \) for a hierarchy of classes corresponding to the algebra \(\mathcal{A} \) discussed above in Section 3.2. FFC thus uses the built-in parser of Python to process variational forms.

5.2. Generation of the tensor representation. The basic elements of the algebra are objects of the class \texttt{BasisFunction}, representing (derivatives of) basis functions of some finite element space. Each \texttt{BasisFunction} is associated with a particular finite element space and different \texttt{BasisFunction}s may be associated with different finite element spaces. Products of scalars and (derivatives of) basis functions are represented by the class \texttt{Product}, and sums of such products are represented by the class \texttt{Sum}. In addition, we include a class \texttt{Function}, representing linear combinations of basis functions (coefficients). In the diagrams of Tables 1 and 2, we summarize the basic unary and binary operators respectively implemented for the hierarchy of classes.

Note that by declaring a common base class for \texttt{BasisFunction}, \texttt{Product}, \texttt{Sum}, and \texttt{Function}, some of the operations can be grouped together to simplify the implementation. As a results, the result of most operators will directly yield a \texttt{Sum}. Also note that the algebra of \texttt{Sums} is closed under the operations listed above.
By associating with each object one or more indices, implemented by the class Index, an object of type Sum automatically represents a tensor, and by differentiating between different types of indices, an object of type Sum automatically encodes the tensor representation (3.4). FFC differentiates between four different types of indices: primary, secondary, auxiliary, and fixed. A primary index (i) is associated with the multiindex of the element tensor A^K, a secondary index (α) is associated with the multiindex of the geometry tensor G^K, and thus the secondary indices indicate along which dimensions to compute the tensor product $A^0_{i\alpha} G^K_{\alpha}$. Auxiliary indices ($\beta$) are internal indices within the reference tensor A^0 or the geometry tensor G_K and must be repeated exactly twice; summation is performed over each auxiliary index β before the tensor product is computed by summation over secondary indices α. Finally, a fixed index is a given constant index that cannot be evaluated. Fixed indices are used to represent for example a derivative in a fixed coordinate direction.

Implicit in our algebra is a grammar for multilinear forms. We could explicitly write an EBNF grammar and use tools such as lex and yacc to create a compiler for a domain-specific language. However, by limiting ourselves to overloaded operators, we successfully embed our language as a high-level library in Python.

To make this concrete, consider test case 2 of section 3.3, Poisson’s equation. The tensor representation $A^K_i = A^0_{i\alpha} G^K_{\alpha}$ is then given by

\[
A^0_{i\alpha} = \int_K \frac{\partial \Phi^1_{i1}(X)}{\partial x_{\alpha_1}} \frac{\partial \Phi^2_{i2}(X)}{\partial x_{\alpha_2}} \, dx,
\]

(5.1)

\[
G^K_{\alpha} = \det F_K' \frac{\partial x_{\alpha_1}}{\partial x_{\beta}} \frac{\partial x_{\alpha_2}}{\partial x_{\beta}}.
\]

There are here two primary indices (i_1 and i_2), two secondary indices (α_1 and α_2), and one auxiliary index (β).
5.3. Evaluation of integrals. Once the tensor representation (3.4) has been generated, FFC computes all entries of the reference tensor(s) by quadrature on the reference element. The quadrature rule is automatically chosen to match the polynomial order of each integrand. FFC uses FIAT [25, 26] as the finite element back-end; FIAT generates the set of basis functions, the quadrature rule, and evaluates the basis functions and their derivatives at the quadrature points.

Although FIAT supports many families of finite elements, the current version of FFC only supports general order continuous/discontinuous Lagrange finite elements and first order Crouzeix–Raviart finite elements on triangles and on tetrahedra (or any other finite element with nodes given by pointwise evaluation). Support for other families of finite elements will be added in future versions.

Computing integrals is the most expensive step in the compilation of a form. The typical run-time (of the compiler) ranges between 0.1 and 30 seconds, depending on the type of form and finite element.

5.4. Generation of code. When a form has been parsed, the tensor representation has been generated, and all integrals computed, code is generated for evaluation of geometry tensors and tensor products. The form compiler FFC has been designed to allow for generation of code in multiple different languages. Code is generated according to a specific format (which is essentially a Python dictionary) that controls the output code being generated, see Figure 5. The current version of FFC supports three output formats: C++ (DOLFIN [21, 22]), \LaTeX (for verification and presentation purposes) and a raw format that just lists the values of the reference tensors. FFC can be easily extended with new output formats, including for example Python, C, or Fortran.

![Figure 5. Diagram of the components of the form compiler FFC.](image-url)

5.5. Input/output. FFC can be used either as a Python package or from the command-line. We here give a brief description of how FFC can be called from the command-line to generate C++ code for DOLFIN. To use FFC from the command-line, one specifies the form in a text file in a special language for variational forms, which is simply Python with equipped with the hierarchy of classes and operators discussed above in Section 5.1. In Table 3 we give the complete code for the specification of test case 2, Poisson’s equation.
Note that FFC uses tensor-notation, and thus the summation over the index \(i \) is implicit. Also note that the integral over an element \(K \) is denoted by \(*dx\).

\[
\text{element} = \text{FiniteElement}("\text{Lagrange}", "\text{tetrahedron}", 3)
\]

\[
v = \text{BasisFunction}(\text{element})
\]

\[
u = \text{BasisFunction}(\text{element})
\]

\[
f = \text{Function}(\text{element})
\]

\[
a = v.\text{dx}(i)*u.\text{dx}(i)*\text{dx}
\]

\[
L = v*f*\text{dx}
\]

Table 3. The complete code for specification of test case 2, Poisson’s equation, with piecewise cubics on tetrahedra in the language of FFC.

Assuming that the form has been specified in the file `Poisson.form`, the form can be compiled using the command `ffc Poisson.form`. This generates the C++ file `Poisson.h` to be included in a DOLFIN program. In Table 4, we include part of the output generated by FFC with input given by the code from Table 3. In addition to this code, FFC generates code for the mapping \(\iota(\cdot, \cdot) \) from local to global degrees of freedom for each finite element space associated with the form. Note that the values of the \(10 \times 10 \) element tensor \(A^K \) (in the case of cubics on triangles) are stored as one contiguous array (block), since this is what the linear algebra back-end of DOLFIN (PETSc) requires for assembly.

```cpp
void eval(double block[], const AffineMap& map) const
{
    // Compute geometry tensors
    double G0_0_0 = map.det*(map.g00*map.g00 + map.g01*map.g01);
    double G0_0_1 = map.det*(map.g00*map.g10 + map.g01*map.g11);
    double G0_1_0 = map.det*(map.g10*map.g00 + map.g11*map.g01);
    double G0_1_1 = map.det*(map.g10*map.g10 + map.g11*map.g11);

    // Compute element tensor
    block[0] = 4.249999999999996e-01*G0_0_0 + 4.249999999999995e-01*G0_0_1 +
               4.249999999999995e-01*G0_1_0 + 4.249999999999995e-01*G0_1_1;
    block[1] = -8.749999999999993e-02*G0_0_0 - 8.749999999999995e-02*G0_0_1;
    block[2] = -8.750000000000005e-02*G0_1_0 - 8.750000000000013e-02*G0_1_1;
    ...
    block[99] = 4.049999999999997e+00*G0_0_0 + 2.024999999999998e+00*G0_0_1 +
                  2.024999999999998e+00*G0_1_0 + 4.049999999999995e+00*G0_1_1;
}
```

Table 4. Part of the code generated by FFC for the input code from Table 3.
5.6. Completing the toolchain. With the FEniCS project [20], we have the beginnings of a working system realizing (in part) the Automation of Computational Mathematical Modeling, and the form compiler FFC is just one of several components needed to complete the toolchain. FIAT automates the generation of finite element spaces and FFC automates the evaluation of variational forms. Furthermore, PETSc [4, 3, 5], automating the solution of discrete systems, is used as the solver back-end of FEniCS. A common C++ interface to the different FEniCS components is provided by DOLFIN.

A complete automation of CMM, as outlined in [30], is a major task and we hope that by a modular approach we can contribute to this automation.

6. Benchmark results

As noted above, the speedup for the code generated by the form compiler FFC can in many cases be significant. Below, we present a comparison with the standard quadrature-based approach for the test cases discussed above in Section 3.3.

The forms were compiled for a range of polynomial degrees using FFC version 0.1.6. This version of FFC does not take into account any of the optimizations discussed in Section 3.5, other than not generating code for multiplication with zero entries of the reference tensor.

For the quadrature-based code, all basis functions and their derivatives were pretabulated at the quadrature points using FIAT. Loops for all scalar products were completely unrolled.

In all cases, we have used the ”collapsed-coordinate” Gauss-Jacobi rules described by Karniadakis and Sherwin [24]. These take tensor-product Gaussian integration rules over the square and cube and map them to the reference simplex. These rules are not the best known (see, for example, [15]), but they are fairly simple to generate for arbitrary degree. Eventually, these rules will be integrated with FIAT, but even if we reduce the number of quadrature points by a factor of five, FFC still outperforms quadrature.

The codes were compiled with gcc (g++) version 3.3.6 and the benchmark results presented below were obtained on an Intel Pentium 4 (CPU 3.0 GHz, 2GB RAM) running Debian GNU/Linux. The times reported are for the computation of each entry of the element tensor on one million elements (scaled). The total time can be obtained by multiplying with \(n^2 \), the number of entries of the element tensor. The complete source-code for the benchmarks can be obtained from the FEniCS web site [20].

6.1. Summary of results. In Table 5, we summarize the results for test cases 1–4. In all cases, the speedup \(T_Q/T_T \) is significant, ranging between a factor 10–1500.

From Section 4, we know that the speedup for the mass matrix should grow as \(q^d \), but from Table 5 it is clear that the speedup is not quadratic for \(d = 2 \) and for \(d = 3 \), an optimum seems to be reached around \(q = 8 \).

The reason that the predicted speedups are not obtained in practice is that the complexity estimates presented in Section 4 only account for the number of floating-point operations. When the polynomial degree \(q \) grows, the number of lines of code generated by the form compiler grows. FFC unrolls all loops and generates one line of code for each
The entry of the element tensor to be computed. For a bilinear form, the number of entries is \(n^2 \sim q^{2d} \). With \(q = 8 \), the number of lines of code generated is about 25,000 for the mass matrix and Poisson in 3D, see Figure 6. As the number of lines of code grows, memory access becomes more important and dominates the run-time. Using BLAS to compute tensor products as discussed above might lead to more efficient memory traffic.

![Lines of code generated](image)

Figure 6. Lines of code generated by the form compiler FFC as function of the polynomial degree \(q \).

Note however that although the optimal speedup is not obtained, the speedup is in all cases significant, even at \(q = 1 \).

<table>
<thead>
<tr>
<th>Form</th>
<th>(q = 1)</th>
<th>(q = 2)</th>
<th>(q = 3)</th>
<th>(q = 4)</th>
<th>(q = 5)</th>
<th>(q = 6)</th>
<th>(q = 7)</th>
<th>(q = 8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass 2D</td>
<td>12</td>
<td>31</td>
<td>50</td>
<td>78</td>
<td>108</td>
<td>147</td>
<td>183</td>
<td>232</td>
</tr>
<tr>
<td>Mass 3D</td>
<td>21</td>
<td>81</td>
<td>189</td>
<td>355</td>
<td>616</td>
<td>881</td>
<td>1442</td>
<td>1475</td>
</tr>
<tr>
<td>Poisson 2D</td>
<td>8</td>
<td>29</td>
<td>56</td>
<td>86</td>
<td>129</td>
<td>144</td>
<td>189</td>
<td>236</td>
</tr>
<tr>
<td>Poisson 3D</td>
<td>9</td>
<td>56</td>
<td>143</td>
<td>259</td>
<td>427</td>
<td>341</td>
<td>285</td>
<td>356</td>
</tr>
<tr>
<td>Navier–Stokes 2D</td>
<td>32</td>
<td>33</td>
<td>53</td>
<td>37</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Navier–Stokes 3D</td>
<td>77</td>
<td>100</td>
<td>61</td>
<td>42</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Elasticity 2D</td>
<td>10</td>
<td>43</td>
<td>67</td>
<td>97</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Elasticity 3D</td>
<td>14</td>
<td>87</td>
<td>103</td>
<td>134</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

Table 5. Speedups \(T_Q/T_T \) for test cases 1–4 in 2D and 3D.

6.2 Results for test cases

In Figures 7–10, we present the results for test cases 1–4 discussed above in Section 3.3. In connection to each of the results, we include the specification of the form in the language used by the form compiler FFC.
Figure 7. Benchmark results for test case 1, the mass matrix, specified in FFC by $a = v \cdot u \cdot dx$.

Figure 8. Benchmark results for test case 2, Poisson's equation, specified in FFC by $a = v \cdot dx(i) \cdot u \cdot dx(i) \cdot dx$.

7. Concluding remarks and future directions

We have demonstrated a proof-of-concept form compiler that for a wide range of variational forms can generate code that gives significant speedups compared to the standard quadrature-based approach.
Figure 9. Benchmark results for test case 3, the nonlinear term of the incompressible Navier–Stokes equations, specified in FFC by $a = v[i]*w[j]*u[i].dx(j)*dx$.

Figure 10. Benchmark results for test case 4, the strain-strain term of linear elasticity, specified in FFC by $a = 0.25*(v[i].dx(j) + v[j].dx(i)) * (u[i].dx(j) + u[j].dx(i)) * dx$.
The form compiler FFC is still in its early stages of development but is already in production use. A number of basic modules based on FFC have been implemented in DOLFIN and others are currently being developed (Navier–Stokes and updated elasticity). This will serve as a test bed for future development of FFC.

Future plans for FFC include adding support for integrals over the boundary (adding the operator \(*ds \) to the language), support for automatic differentiation of nonlinear forms and automatic generation of dual problems and a posteriori error estimators [16, 7], optimization through FErari [27, 28], adding support for new families of finite elements, including elements that require non-affine mappings from the reference element. In addition to general order continuous/discontinuous Lagrange finite elements and Crouzeix–Raviart [13] finite elements, the plan is to add support for Raviart–Thomas [35], Nedelec [33], Brezzi–Douglas–Marini [10], Brezzi–Douglas–Fortin–Marini [11], Arnold–Winther [1], and Taylor–Hood [8, 9] elements.

We also plan to investigate the use of BLAS for evaluation of tensor products as an alternative to generating explicit unrolled code. Other topics of interest include automatic verification of the correctness of the code generated by the form compiler [29].

ACKNOWLEDGMENT

We wish to thank the FEniCS team, in particular Johan Hoffman, Johan Jansson, Claes Johnson, Matthew Knepley, and Ridgway Scott, for substantial suggestions and comments regarding this paper.

REFERENCES

<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003–01</td>
<td>A hybrid method for elastic waves</td>
<td>Larisa Beilina</td>
</tr>
<tr>
<td>2003–02</td>
<td>Application of the local nonobtuse tetrahedral refinement techniques near Fichera-like corners</td>
<td>L. Beilina, S. Korotov and M. Křížek</td>
</tr>
<tr>
<td>2003–03</td>
<td>Nitsche’s method for coupling non-matching meshes in fluid-structure vibration problems</td>
<td>Peter Hansbo and Joakim Hermansson</td>
</tr>
<tr>
<td>2003–05</td>
<td>Smoothing properties and approximation of time derivatives in multistep backward difference methods for linear parabolic equations</td>
<td>Yubin Yan</td>
</tr>
<tr>
<td>2003–06</td>
<td>Postprocessing the finite element method for semilinear parabolic problems</td>
<td>Yubin Yan</td>
</tr>
<tr>
<td>2003–07</td>
<td>The finite element method for a linear stochastic parabolic partial differential equation driven by additive noise</td>
<td>Yubin Yan</td>
</tr>
<tr>
<td>2003–08</td>
<td>A finite element method for a nonlinear stochastic parabolic equation</td>
<td>Yubin Yan</td>
</tr>
<tr>
<td>2003–09</td>
<td>A finite element method for the simulation of strong and weak discontinuities in elasticity</td>
<td>Anita Hansbo and Peter Hansbo</td>
</tr>
<tr>
<td>2003–10</td>
<td>Generalized Green’s functions and the effective domain of influence</td>
<td>Donald Estep, Michael Holst, and Mats G. Larson</td>
</tr>
<tr>
<td>2003–11</td>
<td>Adaptive finite element/difference method for inverse elastic scattering waves</td>
<td>Larisa Beilina</td>
</tr>
<tr>
<td>2003–12</td>
<td>A Lagrange multiplier method for the finite element solution of elliptic domain decomposition problems using non-matching meshes</td>
<td>Peter Hansbo, Carlo Lovadina, Ilaria Perugia, and Giancarlo Sangalli</td>
</tr>
<tr>
<td>2003–13</td>
<td>A reduced P^1–discontinuous Galerkin method</td>
<td>R. Becker, E. Burman, P. Hansbo, and M.G. Larson</td>
</tr>
<tr>
<td>2003–14</td>
<td>Nitsche’s method combined with space–time finite elements for ALE fluid–structure interaction problems</td>
<td>Peter Hansbo, Joakim Hermansson, and Thomas Svedberg</td>
</tr>
<tr>
<td>2003–15</td>
<td>Stabilized Crouzeix–Raviart element for the Darcy-Stokes problem</td>
<td>Erik Burman and Peter Hansbo</td>
</tr>
<tr>
<td>2003–16</td>
<td>Edge stabilization for the generalized Stokes problem: a continuous interior penalty method</td>
<td>Erik Burman and Peter Hansbo</td>
</tr>
<tr>
<td>2003–17</td>
<td>A conservative flux for the continuous Galerkin method based on discontinuous enrichment</td>
<td>Mats G. Larson and A. Jonas Niklasson</td>
</tr>
<tr>
<td>Year</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2003–19</td>
<td>Multi-adaptive time integration</td>
<td>Anders Logg</td>
</tr>
<tr>
<td>2003–20</td>
<td>Adaptive computational methods for parabolic problems</td>
<td>Kenneth Eriksson, Claes Johnson, and Anders Logg</td>
</tr>
<tr>
<td>2003–22</td>
<td>Adaptive finite element methods for LES: Computation of the mean drag coefficient in a turbulent flow around a surface mounted cube using adaptive mesh refinement</td>
<td>Johan Hoffman</td>
</tr>
<tr>
<td>2003–24</td>
<td>Multiscale convergence and reiterated homogenization of parabolic problem</td>
<td>Anders Holmbom, Nils Svanstedt, and Niklas Wellander</td>
</tr>
<tr>
<td>2003–25</td>
<td>On the relationship between some weak compactnesses with different numbers of scales</td>
<td>Anders Holmbom, Jeanette Silfver, Nils Svanstedt, and Niklas Wellander</td>
</tr>
<tr>
<td>2003–26</td>
<td>A posteriori error estimation in computational inverse scattering</td>
<td>Larisa Beilina and Claes Johnson</td>
</tr>
<tr>
<td>2004–01</td>
<td>Computability and adaptivity in CFD</td>
<td>Johan Hoffman och Claes Johnson</td>
</tr>
<tr>
<td>2004–02</td>
<td>Interpolation estimates for piecewise smooth functions in one dimension</td>
<td>Anders Logg</td>
</tr>
<tr>
<td>2004–03</td>
<td>Estimates of derivatives and jumps across element boundaries for multi-adaptive Galerkin solutions of ODEs</td>
<td>Anders Logg</td>
</tr>
<tr>
<td>2004–05</td>
<td>Multi-adaptive Galerkin methods for ODEs IV: A priori error estimates</td>
<td>Anders Logg</td>
</tr>
<tr>
<td>2004–06</td>
<td>A stabilized non-conforming finite element method for incompressible flow</td>
<td>Erik Burman and Peter Hansbo</td>
</tr>
<tr>
<td>2004–08</td>
<td>A new approach to computational turbulence modeling</td>
<td>Johan Hoffman and Claes Johnson</td>
</tr>
<tr>
<td>2004–09</td>
<td>A posteriori error analysis of the boundary penalty method</td>
<td>Kenneth Eriksson, Mats G. Larson, and Axel Målqvist</td>
</tr>
<tr>
<td>2004–10</td>
<td>A posteriori error analysis of stabilized finite element approximations of the helmholtz equation on unstructured grids</td>
<td>Mats G. Larson and Axel Målqvist</td>
</tr>
<tr>
<td>2004–11</td>
<td>Adaptive variational multiscale methods based on a posteriori error estimation</td>
<td>Mats G. Larson and Axel Målqvist</td>
</tr>
</tbody>
</table>
2004–12 Multi-adaptive Galerkin methods for ODEs V: Stiff problems
Johan Jansson and Anders Logg

2004–13 Algorithms for multi-adaptive time-stepping
Johan Jansson and Anders Logg

2004–14 Simulation of mechanical systems with individual time steps
Johan Jansson and Anders Logg

2004–15 Computational modeling of dynamical systems
Johan Jansson, Claes Johnson, and Anders Logg

2004–16 Adaptive variational multiscale methods based on a posteriori error estimation: Duality techniques for elliptic problems
Mats G. Larson and Axel Mååqvist

2004–17 Ultraconvergence of an interpolated finite element method for some fourth-order elliptic problems
Andrey B. Andreev and Milena R. Racheva

2004–18 Adaptive variational multiscale methods based on a posteriori error estimation: energy norm estimates for elliptic problems
Mats G. Larson and Axel Mååqvist

2004–19 Stabilized Lagrange multiplier methods for elastic contact with friction
Per Heintz and Peter Hansbo

2005–01 A posteriori error estimates for mixed finite element approximations of elliptic problems
Mats G. Larson and Axel Mååqvist

2005–02 On the numerical modeling of quasi-static crack growth in linear elastic fracture mechanics
Per Heintz

2005–03 Irreversibility in reversible systems I: the compressible Euler equations in 1d
Johan Hoffman and Claes Johnson

2005–04 Irreversibility in reversible systems II: the incompressible Euler equations
Johan Hoffman and Claes Johnson

2005–05 A Compiler for Variational Forms
Robert C. Kirby and Anders Logg

These preprints can be obtained from

www.phi.chalmers.se/preprints