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Vector-Valued Functions of Several
Real Variables

Auch die Chemiker müssen sich allmählich an den Gedanken gewöh-
nen, dass ihnen die theoretische Chemie ohne die Beherrschung der
Elemente der höheren Analysis ein Buch mit sieben Siegeln blieben
wird. Ein Differential- oder Integralzeichen muss aufhören, für den
Chemiker eine unverständliche Hieroglyphe zu sein, . . . wenn er sich
nicht der Gefahr aussetzen will, für die Entwicklung der theoreti-
schen Chemie jedes Verständnis zu verlieren. (H. Jahn, Grundriss
der Elektrochemie, 1895)

54.1 Introduction

We now turn to the extension of the basic concepts of real-valued functions
of one real variable, such as Lipschitz continuity and differentiability, to
vector-valued functions of several variables. We have carefully prepared the
material so that this extension will be as natural and smooth as possible.
We shall see that the proofs of the basic theorems like the Chain rule, the
Mean Value theorem, Taylor’s theorem, the Contraction Mapping theorem
and the Inverse Function theorem, extend almost word by word to the more
complicated situation of vector valued functions of several real variables.

We consider functions f : Rn → Rm that are vector valued in the sense
that the value f(x) = (f1(x), . . . , fm(x)) is a vector in Rm with components
fi : Rn → R for i = 1, . . . ,m, where with fi(x) = fi(x1, . . . , xn) and
x = (x1, . . . , xn) ∈ Rn. As usual, we view x = (x1, . . . , xn) as a n-column
vector and f(x) = (f1(x), . . . , fm(x)) as a m-column vector.
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As particular examples of vector-valued functions, we first consider
curves, which are functions g : R → Rn, and surfaces, which are func-
tions g : R2 → Rn. We then discuss composite functions f ◦ g : R → Rm,
where g : R → Rn is a curve and f : Rn → Rm, with f ◦ g again being
a curve. We recall that f ◦ g(t) = f(g(t)).

The inputs to the functions reside in the n dimensional vector space Rn

and it is worthwhile to consider the properties of Rn. Of particular im-
portance is the notion of Cauchy sequence and convergence for sequences

{x(j)}∞j=1 of vectors x(j) = (x
(j)
1 , . . . ., x

(j)
n ) ∈ Rn with coordinates x

(j)
k ,

k = 1, . . . , n. We say that the sequence {x(j)}∞j=1 is a Cauchy sequence if
for all ε > 0, there is a natural number N so that

‖x(i) − x(j)‖ ≤ ε for i, j > N.

Here ‖ · ‖ denotes the Euclidean norm in Rn, that is, ‖x‖ = (
∑n

i=1 x
2
i )

1/2.
Sometimes, it is convenient to work with the norms ‖x‖1 =

∑n
i=1 |xi| or

‖x‖∞ = maxi=1,...,n |xi|. We say that the sequence {x(j)}∞j=1 of vectors
in Rn converges to x ∈ Rn if for all ε > 0, there is a natural number N so
that

‖x− x(i)‖ ≤ ε for i > N.

It is easy to show that a convergent sequence is a Cauchy sequence and con-
versely that a Cauchy sequence converges. We obtain these results applying
the corresponding results for sequences in R to each of the coordinates of
the vectors in Rn.

Example 54.1. The sequence {x(i)}∞i=1 in R2, x(i) = (1 − i−2, exp(−i)),
converges to (1, 0).

54.2 Curves in Rn

A function g : I → Rn, where I = [a, b] is an interval of real numbers, is
a curve in Rn, see Fig. 54.1. If we use t as the independent variable ranging
over I, then we say that the curve g(t) is parametrized by the variable t.
We also refer to the set of points Γ = {g(t) ∈ Rn : t ∈ I} as the curve Γ
parameterized by the function g : I → Rn.

Example 54.2. The simplest example of a curve is a straight line. The
function g : R → R2 given by

g(t) = x̄+ tz,

where z ∈ R2 and x̄ ∈ R2, is a straight line in R2 through the point x̄ with
direction z, see Fig. 54.2.
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Fig. 54.1. The curve g : [0, 4] → R3 with g(t) =
(
t1/2 cos(πt), t1/2 sin(πt),t

)
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Fig. 54.2. On the left: the curve g(t) = x̄+ta. On the right: a curve g(t) = (t, f(t))

Example 54.3. Let f : [a, b] → R be given, and define g : [a, b] → R2

by g(t) = (g1(t), g2(t)) = (t, f(t)). This curve is simply the graph of the
function f : [a, b] → R, see Fig. 54.2.

54.3 Different Parameterizations of a Curve

It is possible to use different parametrizations for the set of points forming
a curve. If h : [c, d] → [a, b] is a one-to-one mapping, then the composite
function f = g ◦ h : [c, d] → R2 is a reparameterization of the curve {g(t) :
t ∈ [a, b]} given by g : [a, b] → R2.

Example 54.4. The function f : [0,∞) → R3 given by

f(τ) = (τ cos(πτ2), τ sin(πτ2), τ2),

is a reparameterization of the curve g : [0,∞) → R3 given by

g(t) = (
√
t cos(πt),

√
t sin(πt), t),

obtained setting t = h(τ) = τ2. We have f = g ◦ h.



790 54. Vector-Valued Functions of Several Real Variables

54.4 Surfaces in Rn, n ≥ 3

A function g : Q → Rn, where n ≥ 3 and Q is a subdomain of R2, may
be viewed to be a surface S in Rn, see Fig. 54.3. We write g = g(y) with
y = (y1, y2) ∈ Q and say that S is parameterized by y ∈ Q. We may also
identify the surface S with the set of points S = {g(y) ∈ Rn : y ∈ Q}, and
reparameterize S by f = g ◦ h : Q̃ → Rn if h : Q̃ → Q is a one-to-one
mapping of a domain Q̃ in R2 onto Q.

Example 54.5. The simplest example of a surface g : R2 → R3 is a plane
in R3 given by

g(y) = g(y1, y2) = x̄+ y1b1 + y2b2, y ∈ R2,

where x̄, b1, b2 ∈ R3.

Example 54.6. Let f : [0, 1] × [0, 1] → R be given, and define g : [0, 1] ×
[0, 1] → R3 by g(y1, y2) = (y1, y2, f(y1, y2)). This is a surface, which is the
graph of f : [0, 1] × [0, 1] → R. We also refer to this surface briefly as the
surface given by the function x3 = f(x1, x2) with (x1, x2) ∈ [0, 1]× [0, 1].
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Fig. 54.3. The surface s(y1, y2) =
(
y1, y2, y1 sin

(
(y1 + y2)π/2

))
with

−1 ≤ y1, y2 ≤ 1, or briefly the surface x3 = x1 sin
(
(x1 + x2)π/2

)
with

−1 ≤ x1, x2 ≤ 1

54.5 Lipschitz Continuity

We say that f : Rn → Rm is Lipschitz continuous on Rn if there is a con-
stant L such that

‖f(x) − f(y)‖ ≤ L‖x− y‖ for all x, y ∈ Rn. (54.1)
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This definition extends easily to functions f : A → Rm with the domain
D(f) = A being a subset of Rn. For example, A may be the unit n-cube
[0, 1]n = {x ∈ Rn : 0 ≤ xi ≤ 1, i = 1, . . . , n} or the unit n-disc {x ∈ Rn :
‖x‖ ≤ 1}.

To check if a function f : A → Rm is Lipschitz continuous on some
subset A of Rn, it suffices to check that the component functions fi : A→ R
are Lipschitz continuous. This is because

|fi(x) − fi(y)| ≤ Li‖x− y‖ for i = 1, . . . ,m,

implies

‖f(x) − f(y)‖2 =

m∑

i=1

|fi(x) − fi(y)|2 ≤
m∑

i=1

L2
i ‖x− y‖2,

which shows that ‖f(x) − f(y)‖ ≤ L‖x− y‖ with L = (
∑

i L
2
i )

1
2 .

Example 54.7. The function f : [0, 1] × [0, 1] → R2 defined by f(x1, x2) =
(x1 + x2, x1x2), is Lipschitz continuous with Lipschitz constant L = 2.
To show this, we note that f1(x1, x2) = x1 + x2 is Lipschitz continuous
on [0, 1] × [0, 1] with Lipschitz constant L1 =

√
2 because |f1(x1, x2) −

f1(y1, y2)| ≤ |x1 − y1| + |x2 − y2| ≤
√

2‖x − y‖ by Cauchy’s inequality.
Similarly, f2(x1, x2) = x1x2 is Lipschitz continuous on [0, 1] × [0, 1] with
Lipschitz constant L2 =

√
2 since |x1x2 − y1y2| = |x1x2 − y1x2 + y1x2 −

y1y2| ≤ |x1 − y1| + |x2 − y2| ≤
√

2‖x− y‖.

Example 54.8. The function f : Rn → Rn defined by

f(x1, . . . , xn) = (xn, xn−1, . . . , x1),

is Lipschitz continuous with Lipschitz constant L = 1.

Example 54.9. A linear transformation f : Rn → Rm given by an m × n
matrix A = (aij), with f(x) = Ax and x a n-column vector, is Lipschitz
continuous with Lipschitz constant L = ‖A‖. We made this observation in
Chapter Analytic geometry in Rn. We repeat the argument:

L = max
x �=y

‖f(x) − f(y)‖
‖x− y‖ = max

x �=y

‖Ax−Ay‖
‖x− y‖

= max
x �=y

‖A(x− y)‖
‖x− y‖ = max

x �=0

‖Ax‖
‖x‖ = ‖A‖.

Concerning the definition of the matrix norm ‖A‖, we note that the function
F (x) = ‖Ax‖/‖x‖ is homogeneous of degree zero, that is, F (λx) = F (x)
for all non-zero real numbers λ, and thus ‖A‖ is the maximum value of
F (x) on the closed and bounded set {x ∈ Rn : ‖x‖ = 1}, which is a finite
real number.



792 54. Vector-Valued Functions of Several Real Variables
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Fig. 54.4. Illustration of the mapping f(x1, x2) = (x2, x1), which is clearly
Lipschitz continuous with L = 1

We recall that if A is a diagonal n × n matrix with diagonal elements λi,
then ‖A‖ = maxi |λi|.

54.6 Differentiability: Jacobian, Gradient
and Tangent

We say that f : Rn → Rm is differentiable at x̄ ∈ Rn if there is a m×n mat-
rix M(x̄) = (mij(x̄)), called the Jacobian of the function f(x) at x̄, and
a constant Kf(x̄) such that for all x close to x̄,

f(x) = f(x̄) +M(x̄)(x− x̄) + Ef (x, x̄), (54.2)

where Ef (x, x̄) = (Ef (x, x̄)i) is an m-vector satisfying ‖Ef (x, x̄)‖ ≤
Kf(x̄)‖x − x̄‖2. We also denote the Jacobian by Df(x̄) or f ′(x̄) so that
M(x̄) = Df(x̄) = f ′(x̄). Since f(x) is a m-column vector, or m × 1 mat-
rix, and x is a n-column vector, or n×1 matrix, M(x̄)(x− x̄) is the product
of the m×nmatrix M(x̄) and the n×1 matrix x−x̄ yielding a m×1 matrix
or a m-column vector.

We say that f : A→ Rm, where A is a subset of Rn, is differentiable on
A if f(x) is differentiable at x̄ for all x̄ ∈ A. We say that f : A → Rm is
uniformly differentiable on A if the constant Kf (x̄) = Kf can be chosen
independently of x̄ ∈ A.

We now show how to determine a specific element mij(x̄) of the Jacobian
using the relation (54.2). We consider the coordinate function fi(x1, . . . , xn)
and setting x = x̄ + sej , where ej is the jth standard basis vector and s
is a small real number, we focus on the variation of fi(x1, . . . , xn) as the
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Fig. 54.5. Carl Jacobi (1804–51): “It is often more convenient to possess the
ashes of great men than to possess the men themselves during their lifetime” (on
the return of Descarte’s remains to France)

variable xj varies in a neighborhood of x̄j . The relation (54.2) states that
for small non-zero real numbers s,

fi(x̄+ sej) = fi(x̄) +mij(x̄)s+ Ef (x̄+ sej, x̄)i, (54.3)

where ‖x− x̄‖2 = ‖sej‖2 = s2 implies

|Ef (x̄+ sej , x̄)i| ≤ Kf(x̄)s2.

Note that by assumption ‖Ef (x, x̄)‖ ≤ Kf (x̄)‖x − x̄‖2, and so each coor-
dinate function Ef (x̄+ sej , x̄)i satisfies |Ef (x, x̄)i| ≤ Kf(x̄)‖x− x̄‖2.

Now, dividing by s in (54.3) and letting s tend to zero, we find that

mij(x̄) = lim
s→0

fi(x̄+ sej) − fi(x̄)

s
, (54.4)

which we can also write as

mij(x̄) = (54.5)

lim
xj→x̄j

fi(x̄1, . . . , x̄j−1, xj , x̄j+1, . . . , x̄n) − fi(x̄1, . . . , x̄j−1, x̄j , x̄j+1, . . . , x̄n)

xj − x̄j
.

We refer to mij(x̄) as the partial derivative of fi with respect to xj at x̄,

and we use the alternative notation mij(x̄) = ∂fi

∂xj
(x̄). To compute ∂fi

∂xj
(x̄)

we freeze all coordinates at x̄ but the coordinate xj and then let xj vary
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in a neighborhood of x̄j . The formula

∂fi

∂xj
(x̄) = (54.6)

lim
xj→x̄j

fi(x̄1, . . . , x̄j−1, xj , x̄j+1, . . . , x̄n) − fi(x̄1, . . . , x̄j−1, x̄j , x̄j+1, . . . , x̄n)

xj − x̄j
,

states that we compute the partial derivative with respect to the variable xj

by keeping all the other variables x1, . . . , xj−1, xj+1, . . . , xn constant. Thus,
computing partial derivatives should be a pleasure using our previous ex-
pertise of computing derivatives of functions of one real variable!

We may express the computation alternatively as follows:

∂fi

∂xj
(x̄) = mij(x̄) = g′ij(0) =

dgij

ds
(0), (54.7)

where gij(s) = fi(x̄ + sej).

Example 54.10. Let f : R3 → R be given by f(x1, x2, x3) =
x1e

x2 sin(x3). We compute

∂f

∂x1
(x̄) = ex̄2 sin(x̄3),

∂f

∂x2
(x̄) = x̄1e

x̄2 sin(x̄3),

∂f

∂x3
(x̄) = x̄1e

x̄2 cos(x̄3),

and thus

f ′(x̄) = (ex̄2 sin(x̄3), x̄1e
x̄2 sin(x̄3), x̄1e

x̄2 cos(x̄3))

Example 54.11. If f : R3 → R2 is given by f(x) =

(
exp(x2

1 + x2
2)

sin(x2 + 2x3)

)
, then

f ′(x) =

(
2x1 exp(x2

1 + x2
2) 2x2 exp(x2

1 + x2
2) 0

0 cos(x2 + 2x3) 2 cos(x2 + 2x3)

)
.

We have now shown how to compute the elements of a Jacobian using
the usual rules for differentiation with respect to one real variable. This
opens a whole new world of applications to explore. The setting is thus
a differentiable function f : Rn → Rm satisfying for suitable x, x̄ ∈ Rn:

f(x) = f(x̄) + f ′(x̄)(x − x̄) + Ef (x, x̄), (54.8)

with ‖Ef (x, x̄)‖ ≤ Kf (x̄)‖x − x̄‖2, where f ′(x̄) = Df(x̄) is the Jacobian

m× n matrix with elements ∂fi

∂xj
:

f ′(x̄) = Df(x̄) =




∂f1

∂x1
(x̄) ∂f1

∂x2
(x̄) . . . ∂f1

∂xn
(x̄)

∂f2

∂x1
(x̄) ∂f2

∂x2
(x̄) . . . ∂f2

∂xn
(x̄)

. . . . . . . . .
∂fm

∂x1
(x̄) ∂fm

∂x2
(x̄) . . . ∂fm

∂xn
(x̄)


 .
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Sometimes we use the following notation for the Jacobian f ′(x) of a func-
tion y = f(x) with f : Rn → Rm:

f ′(x) =
dy1, . . . , dym

dx1, . . . , dxn
(x) (54.9)

The function x → f̂(x) = f(x̄) + f ′(x̄)(x − x̄) is called the linearization
of the function x→ f(x) at x = x̄. We have

f̂(x) = f ′(x̄)x+ f(x̄) − f ′(x̄)x̄ = Ax+ b,

with A = f ′(x̄) am×nmatrix and b = f(x̄)−f ′(x̄)x̄ am-column vector. We

say that f̂(x) is an affine transformation, which is a transformation of the
form x→ Ax+b, where x is a n-column vector, A is a m×n matrix and b is
a m-column vector. The Jacobian f̂ ′(x) of the linearization f̂(x) = Ax+ b
is a constant matrix equal to the matrix A, because the partial derivatives
of Ax with respect to x are simply the elements of the matrix A.

If f : Rn → R, that is m = 1, then we also denote the Jacobian f ′ by ∇f ,
that is,

f ′(x̄) = ∇f(x̄) =

(
∂f

∂x1
(x̄), . . . ,

∂f

∂xn
(x̄)

)
.

In words, ∇f(x̄) is the n-row vector or 1×n matrix of partial derivatives of
f(x) with respect to x1, x2, . . . , xn at x̄. We refer to ∇f(x̄) as the gradient
of f(x) at x̄. If f : Rn → R is differentiable at x̄, we thus have

f(x) = f(x̄) + ∇f(x̄)(x − x̄) + Ef (x, x̄), (54.10)

with |Ef (x, x̄)| ≤ Kf (x̄)‖x − x̄‖2, and f̂(x) = f(x̄) + ∇f(x̄)(x − x̄) is the
linearization of f(x) at x = x̄. We may alternatively express the product
∇f(x̄)(x− x̄) of the n-row vector (1×n matrix) ∇f(x̄) with the n-column
vector (n× 1 matrix) (x − x̄) as the scalar product ∇f(x̄) · (x − x̄) of the
n-vector ∇f(x̄) with the n-vector (x − x̄). We thus often write (54.10) in
the form

f(x) = f(x̄) + ∇f(x̄) · (x− x̄) + Ef (x, x̄). (54.11)

Example 54.12. If f : R3 → R is given by f(x) = x2
1 + 2x3

2 + 3x4
3, then

∇f(x) = (2x1, 6x
2
2, 12x3

3).

Example 54.13. The equation x3 = f(x) with f : R2 → R and x = (x1, x2)
represents a surface in R3 (the graph of the function f). The linearization

x3 = f(x̄) + ∇f(x̄) · (x− x̄)

= f(x̄) +
∂f

∂x1
(x̄)(x1 − x̄1) +

∂f

∂x2
(x̄)(x2 − x̄2)

with x̄ = (x̄1, x̄2), represents the tangent plane at x = x̄, see Fig. 54.6.
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x1

x2

x3

x̄

x3 = f(x1, x2)

x3 = f(x̄) + ∇f(x̄)(x− x̄)

Fig. 54.6. The surface x3 = f(x1, x2) and its tangent plane

Example 54.14. Consider now a curve f : R → Rm, that is, f(t) =
(f1(t), . . . , fm(t)) with t ∈ R and we have a situation with n = 1. The

linearization t→ f̂(t) = f(t̄) + f ′(t̄)(t− t̄) at t̄ represents a straight line in
Rm through the point f(t̄) and the Jacobian f ′(t̄) = (f ′

1(t̄), . . . , f
′
m(t̄)) gives

the direction of the tangent to the curve f : R → Rm at f(t̄), see Fig. 54.7.

x1

x2

a bt
t s(a)

s(t)

s(b)

s′(t)

Fig. 54.7. The tangent s′(t) to a curve given by s(t)

54.7 The Chain Rule

Let g : Rn → Rm and f : Rm → Rp and consider the composite function
f ◦ g : Rn → Rp defined by f ◦ g(x) = f(g(x)). Under suitable assumptions
of differentiability and Lipschitz continuity, we shall prove a Chain rule
generalizing the Chain rule of Chapter Differentiation rules in the case
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n = m = p = 1. Using linearizations of f and g, we have

f(g(x)) = f(g(x̄)) + f ′(g(x̄))(g(x) − g(x̄)) + Ef (g(x), g(x̄))

= f(g(x̄)) + f ′(g(x̄))g′(x̄)(x− x̄) + f ′(g(x̄))Eg(x, x̄) + Ef (g(x), g(x̄)),

where we may naturally assume that

‖Ef(g(x), g(x̄))‖ ≤ Kf‖g(x) − g(x̄)‖2 ≤ KfL
2
g‖x− x̄‖2,

and ‖f ′(g(x̄))Eg(x, x̄)‖ ≤ ‖f ′(g(x̄))‖Kg‖x − x̄‖2, with suitable constants
of differentiability Kf and Kg and Lipschitz constant Lg. We have now
proved:

Theorem 54.1 (The Chain rule) If g : Rn → Rm is differentiable at
x̄ ∈ Rn, and f : Rm → Rp is differentiable at g(x̄) ∈ Rm and further
g : Rn → Rm is Lipschitz continuous, then the composite function f ◦ g :
Rn → Rp is differentiable at x̄ ∈ Rn with Jacobian

(f ◦ g)′(x̄) = f ′(g(x̄))g′(x̄).

The Chain rule has a wealth of applications and we now turn to harvest
a couple of the most basic examples.

54.8 The Mean Value Theorem

Let f : Rn → R be differentiable on Rn with a Lipschitz continuous gra-
dient, and for given x, x̄ ∈ Rn consider the function h : R → R defined
by

h(t) = f(x̄+ t(x− x̄)) = f ◦ g(t),

with g(t) = x̄+ t(x− x̄) representing the straight line through x̄ and x. We
have

f(x) − f(x̄) = h(1) − h(0) = h′(t̄),

for some t̄ ∈ [0, 1], where we applied the usual Mean Value theorem to the
function h(t). By the Chain rule we have

h′(t) = ∇f(g(t)) · g′(t) = ∇f(g(t)) · (x− x̄),

and we have now proved:

Theorem 54.2 (Mean Value theorem) Let f : Rn → R be differen-
tiable on Rn with a Lipschitz continuous gradient ∇f . Then for given x
and x̄ in Rn, there is y = x+ t̄(x− x̄) with t̄ ∈ [0, 1], such that

f(x) − f(x̄) = ∇f(y) · (x− x̄).



798 54. Vector-Valued Functions of Several Real Variables

With the help of the Mean Value theorem we express the difference
f(x)− f(x̄) as the scalar product of the gradient ∇f(y) with the difference
x− x̄, where y is a point somewhere on the straight line between x and x̄.

We may extend the Mean Value theorem to a function f : Rn → Rm to
take the form

f(x) − f(x̄) = f ′(y)(x− x̄),

where y is a point on the straight line between x and x̄, which may be
different for different rows of f ′(y). We may then estimate:

‖f(x) − f(x̄)‖ = ‖f ′(y) · (x− x̄)‖ ≤ ‖f ′(y)‖‖x− x̄‖,

and we may thus estimate the Lipschitz constant of f by maxy ‖f ′(y)‖ with
‖f ′(y)‖ the (Euclidean) matrix norm of f ′(y).

Example 54.15. Let f : Rn → R be given by f(x) = sin(
∑n

j=1 xj). We
have

∂f

∂xi
(x̄) = cos




n∑

j=1

x̄j


 for i = 1, . . . , n,

and thus | ∂f
∂xi

(x̄)| ≤ 1 for i = 1, . . . , n, and therefore

‖∇f(x̄)‖ ≤ √
n.

We conclude that f(x) = sin(
∑n

j=1 xj) is Lipschitz continuous with Lips-

chitz constant
√
n.

54.9 Direction of Steepest Descent
and the Gradient

Let f : Rn → R be a given function and suppose we want to study the
variation of f(x) in a neighborhood of a given point x̄ ∈ Rn. More precisely,
let x vary on the line through x̄ in a given direction z ∈ Rn, that is assume
that x = x̄ + tz where t is a real variable varying in a neighborhood of 0.
Assuming f to be differentiable, the linearization formula (54.8) implies

f(x) = f(x̄) + t∇f(x̄) · z + Ef (x, x̄), (54.12)

where |Ef (x, x̄)| ≤ t2Kf‖z‖2 and ∇f(x̄) · z is the scalar product of the
gradient ∇f(x̄) ∈ Rn and the vector z ∈ Rn. If ∇f(x̄) · z �= 0, then the
linear term t∇f(x̄)·z will dominate the quadratic term Ef (x, x̄) for small t.
So the linearization

f̂(x) = f(x̄) + t∇f(x̄) · z
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will be a good approximation of f(x) for x = x̄ + tz close to x̄. Thus if
∇f(x̄) · z �= 0, then we get good information on the variation of f(x) along
the line x = x̄ + tz by studying the linear function t → f(x̄) + t∇f(x̄) · z
with slope ∇f(x̄) ·z. In particular, if ∇f(x̄) ·z > 0 and x = x̄+tz then f̂(x)
increases as we increase t and decreases as we decrease t. Similarly, if ∇f(x̄)·
z < 0 and x = x̄+ tz then f̂(x) decreases as we increase t and increases as
we decrease t.

Alternatively, we may consider the composite function Fz : R → R de-
fined by Fz(t) = f(gz(t)) with gz : R → Rn given by gz(t) = x̄+ tz. Obvi-
ously, Fz(t) describes the variation of f(x) on the straight line through x̄
with direction z, with Fz(0) = f(x̄). Of course, the derivative F ′

z(0) gives
important information on this variation close to x̄. By the Chain rule we
have

F ′
z(0) = ∇f(x̄)z = ∇f(x̄) · z,

and we retrieve ∇f(x̄) · z as a quantity of interest. In particular, the sign
of ∇f(x̄) · z determines if Fz(t) is increasing or decreasing at t = 0.

We may now ask how to choose the direction z to get maximal increase or
decrease. We assume ∇f(x̄) �= 0 to avoid the trivial case with F ′

z(0) = 0 for
all z. It is then natural to normalize z so ‖z‖ = 1 and we study the quantity
F ′

z(0) = ∇f(x̄) · z as we vary z ∈ Rn with ‖z‖ = 1. We conclude that the
scalar product ∇f(x̄) · z is maximized if we choose z in the direction of the
gradient ∇f(x̄),

z =
∇f(x̄)

‖∇f(x̄)‖ ,

which is called the direction of steepest ascent. For this gives

max
‖z‖=1

F ′
z(0) = ∇f(x̄) · ∇f(x̄)

‖∇f(x̄)‖ = ‖∇f(x̄)‖.

Similarly, the scalar product is minimized if we choose z in the opposite
direction of the gradient ∇f(x̄),

z = − ∇f(x̄)

‖∇f(x̄)‖ ,

which is called the direction of steepest descent, see Fig. 54.8. For then

min
‖z‖=1

F ′
z(0) = −∇f(x̄) · ∇f(x̄)

‖∇f(x̄)‖ = −‖∇f(x̄)‖.

If ∇f(x̄) = 0, then x̄ is said to be a stationary point. If x̄ is a stationary
point, then evidently ∇f(x̄) · z = 0 for any direction z and

f(x) = f(x̄) + Ef (x, x̄).

The difference f(x)−f(x̄) is then quadratically small in the distance ‖x−x̄‖,
that is |f(x) − f(x̄)| ≤ Kf‖x− x̄‖2, and f(x) is very close to the constant
value f(x̄) for x close to x̄.
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Fig. 54.8. Directions of steepest descent on a “hiking map”

54.10 A Minimum Point Is a Stationary Point

Suppose x̄ ∈ Rn is a minimum point for the function f : Rn → R, that is

f(x) ≥ f(x̄) for x ∈ Rn. (54.13)

We shall show that if f(x) is differentiable at a minimum point x̄, then

∇f(x̄) = 0. (54.14)

For if ∇f(x̄) �= 0, then we could move in the direction of steepest descent
from x̄ to a point x close to x̄ with f(x) < f(x̄), contradicting (54.13).
Consequently, in order to find minimum points of a function f : Rn → R,
we are led to try to solve the equation g(x) = 0, where g = ∇f : Rn → Rn.
Here, we interpret ∇f(x) as a n-column vector.

A whole world of applications in mechanics, physics and other areas may
be formulated as solving equations of the form ∇f(x) = 0, that is as finding
stationary points. We shall meet many applications below.

54.11 The Method of Steepest Descent

Let f : Rn → R be given and consider the problem of finding a minimum
point x̄. To do so it is natural to try a method of Steepest Descent: Given
an approximation ȳ of x̄ with ∇f(ȳ) �= 0, we move from ȳ to a new point y
in the direction of steepest descent:

y = ȳ − α
∇f(ȳ)

‖∇f(ȳ)‖ ,
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where α > 0 is a step length to be chosen. We know that f(y) decreases
as α increases from 0 and the question is just to find a reasonable value
of α. This can be done by increasing α in small steps until f(y) doesn’t
decrease anymore. The procedure is then repeated with ȳ replaced by y.
Evidently, the method of Steepest Descent is closely connected to Fixed
Point Iteration for solving the equation ∇f(x) = 0 in the form

x = x− α∇f(x)

where we let α > 0 include the normalizing factor 1/‖∇f(ȳ)‖.

Fig. 54.9. The method of Steepest Descent for f(x1, x2) = x1 sin(x1 + x2)
+x2 cos(2x1 − 3x2) starting at (.5, .5) with α = .3

54.12 Directional Derivatives

Consider a function f : Rn → R, let gz(t) = x̄ + tz with z ∈ Rn a given
vector normalized to ‖z‖ = 1, and consider the composite function Fz(t) =
f(x̄+ tz). The Chain rule implies

F ′
z(0) = ∇f(x̄) · z,

and

∇f(x̄) · z

is called the derivative of f(x) in the direction z at x̄, see Fig. 54.10.



802 54. Vector-Valued Functions of Several Real Variables

Fig. 54.10. Illustration of directional derivative

54.13 Higher Order Partial Derivatives

Let f : Rn → R be differentiable on Rn. Each partial derivative ∂f
∂xi

(x̄) is
a function of x̄ ∈ Rn may be itself be differentiable. We denote its partial
derivatives by

∂

∂xj

∂f

∂xi
(x̄) =

∂2f

∂xj∂xi
(x̄), i, j = 1, . . . , n, x̄ ∈ Rn,

which are called the partial derivatives of f of second order at x̄. It turns out
that under appropriate continuity assumptions, the order of differentiation
does not matter. In other words, we shall prove that

∂2f

∂xj∂xi
(x̄) =

∂2f

∂xi∂xj
(x̄).

We carry out the proof in the case n = 2 with i = 1 and j = 2. We rewrite
the expression

A = f(x1, x2) − f(x̄1, x2) − f(x1, x̄2) + f(x̄1, x̄2), (54.15)

as

A = f(x1, x2) − f(x1, x̄2) − f(x̄1, x2) + f(x̄1, x̄2), (54.16)

by shifting the order of the two mid terms. First, we set F (x1, x2) =
f(x1, x2) − f(x̄1, x2) and use (54.15) to write

A = F (x1, x2) − F (x1, x̄2).
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The Mean Value theorem implies

A =
∂F

∂x2
(x1, y2)(x2 − x̄2) =

(
∂f

∂x2
(x1, y2) −

∂f

∂x2
(x̄1, y2)

)
(x2 − x̄2)

for some y2 ∈ [x̄2, x2]. We use the Mean value theorem once again to get

A =
∂2f

∂x1∂x2
(y1, y2)(x1 − x̄1)(x2 − x̄2),

with y1 ∈ [x̄1, x1]. We next rewrite A using (54.16) in the form

A = G(x1, x2) −G(x̄1, x2),

where G(x1, x2) = f(x1, x2) − f(x1, x̄2). Using the Mean Value theorem
twice as above, we obtain

A =
∂2f

∂x2∂x1
(z1, z2)(x1 − x̄1)(x2 − x̄2),

where zi ∈ [x̄i, xi], i = 1, 2. Assuming the second partial derivatives are
Lipschitz continuous at x̄ and letting xi tend to x̄i for i = 1, 2 gives

∂2f

∂x1∂x2
(x̄) =

∂2f

∂x2∂x1
(x̄).

We have proved the following fundamental result:

Theorem 54.3 If the partial derivatives of second order of a function f :
Rn → R are all Lipschitz continuous, then the order of application of the
derivatives of second order is irrelevant.

The result directly generalizes to higher order partial derivatives: if the
derivatives are Lipschitz continuous, then the order of application doesn’t
matter. What a relief!

54.14 Taylor’s Theorem

Suppose f : Rn → R has Lipschitz continuous partial derivatives of order 2.
For given x, x̄ ∈ Rn, consider the function h : R → R defined by

h(t) = f(x̄+ t(x− x̄)) = f ◦ g(t),

where g(t) = x̄ + t(x − x̄) is the straight line through x̄ and x. Clearly
h(1) = f(x) and h(0) = f(x̄), so the Taylor’s theorem applied to h(t) gives

h(1) = h(0) + h′(0) +
1

2
h′′(t̄),
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for some t̄ ∈ [0, 1]. We compute using the Chain rule:

h′(t) = ∇f(g(t)) · (x− x̄) =

n∑

i=1

∂f

∂xi
(g(t))(xi − x̄i),

and similarly by a further differentiation with respect to t:

h′′(t) =

n∑

i=1

n∑

j=1

∂2f

∂xi∂xj
(g(t))(xi − x̄i)(xj − x̄j).

We thus obtain

f(x) = f(x̄)+∇f(x̄)·(x− x̄)+
1

2

n∑

i,j=1

∂2f

∂xi∂xj
(y)(xi− x̄i)(xj − x̄j), (54.17)

for some y = x̄+ t̄(x− x̄) with t ∈ [0, 1]. The n×n matrix H(x̄) = (hij(x̄))

with elements hij(x̄) = ∂2f
∂xi∂xj

(x̄) is called the Hessian of f(x) at x = x̄.

The Hessian is the matrix of all second partial derivatives of f : Rn → R.
With matrix vector notation with x a n-column vector, we can write

n∑

i,j=1

∂2f

∂xi∂xj
(y)(xi − x̄i)(xj − x̄j) = (x− x̄)	H(y)(x− x̄).

We summarize:

Theorem 54.4 (Taylor’s theorem) Let f : Rn → R be twice differen-
tiable with Lipschitz continuous Hessian H = (hij) with elements hij =

∂2f
∂xi∂xj

. Then, for given x and x̄ ∈ Rn, there is y = x + t̄(x − x̄) with

t̄ ∈ [0, 1], such that

f(x) = f(x̄) + ∇f(x̄) · (x− x̄) +
1

2

n∑

i,j=1

∂2f

∂xi∂xj
(y)(xi − x̄i)(xj − x̄j)

= f(x̄) + ∇f(x̄) · (x− x̄) +
1

2
(x− x̄)	H(y)(x− x̄).

54.15 The Contraction Mapping Theorem

We shall now prove the following generalization of the Contraction Mapping
theorem.

Theorem 54.5 If g : Rn → Rn is Lipschitz continuous with Lipschitz
constant L < 1, then the equation x = g(x) has a unique solution x̄ =
limi→∞ x(i), where {x(i)}∞i=1 is a sequence in Rn generated by Fixed Point
Iteration: x(i) = g(x(i−1)), i = 1, 2, . . ., starting with any initial value x(0).
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The proof is word by word the same as in the case g : R → R considered in
Chapter Fixed Points and Contraction Mappings. We repeat the proof for
the convenience of the reader. Subtracting the equation x(k) = g(x(k−1))
from x(k+1) = g(x(k)), we get

x(k+1) − x(k) = g(x(k)) − g(x(k−1)),

and using the Lipschitz continuity of g, we thus have

‖x(k+1) − x(k)‖ ≤ L‖x(k) − x(k−1)‖.

Repeating this estimate, we find that

‖x(k+1) − x(k)‖ ≤ Lk‖x(1) − x(0)‖,

and thus for j > i

‖x(i) − x(j)‖ ≤
j−1∑

k=i

‖x(k) − x(k+1)‖

≤ ‖x(1) − x(0)‖
j−1∑

k=i

Lk = ‖x(1) − x(0)‖Li 1 − Lj−i

1 − L
.

Since L < 1, {x(i)}∞i=1 is a Cauchy sequence in Rn, and therefore converges
to a limit x̄ = limi→∞ x(i). Passing to the limit in the equation x(i) =
g(x(i−1)) shows that x̄ = g(x̄) and thus x̄ is a fixed point of g : Rn → Rn.
Uniqueness follows from the fact that if ȳ = g(ȳ), then ‖x̄− ȳ‖ = ‖g(x̄) −
g(ȳ)‖ ≤ L‖x̄− ȳ‖ which is impossible unless ȳ = x̄, because L < 1.

Example 54.16. Consider the function g : R2 → R2 defined by g(x) =
(g1(x), g2(x)) with

g1(x) =
1

4 + |x1| + |x2|
, g2(x) =

1

4 + | sin(x1)| + | cos(x2)|
.

We have

| ∂gi

∂xj
| ≤ 1

16
,

and thus by simple estimates

‖g(x) − g(y)‖ ≤ 1

4
‖x− y‖,

which shows that g : R2 → R2 is Lipschitz continuous with Lipschitz
constant Lg ≤ 1

4 . The equation x = g(x) thus has a unique solution.
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54.16 Solving f(x) = 0 with f : Rn → Rn

The Contraction Mapping theorem can be applied as follows. Suppose f :
Rn → Rn is given and we want to solve the equation f(x) = 0. Introduce

g(x) = x−Af(x),

where A is some non-singular n×n matrix with constant coefficients to be
chosen. The equation x = g(x) is then equivalent to the equation f(x) = 0.
If g : Rn → Rn is Lipschitz continuous with Lipschitz constant L < 1,
then g(x) has a unique fixed point x̄ and thus f(x̄) = 0. We have

g′(x) = I −Af ′(x),

and thus we are led to choose the matrix A so that

‖I −Af ′(x)‖ ≤ 1

for x close to the root x̄. The ideal choice seems to be:

A = f ′(x̄)−1,

assuming that f ′(x̄) is non-singular, since then g′(x̄) = 0. In applications,
we may seek to choose A close to f ′(x̄)−1 with the hope that the corre-
sponding g′(x) = I − Af ′(x) will have ‖g′x)TS

c‖ small for x close to the
root x̄, leading to a quick convergence. In Newton’s method we choose
A = f ′(x)−1, see below.

Example 54.17. Consider the initial value problem u̇(t) = f(u(t)) for t > 0,
u(0) = u0, where f : Rn → Rn is a given Lipschitz continuous function with
Lipschitz constant Lf , and as usual u̇ = du

dt . Consider the backward Euler
method

U(ti) = U(ti−1) + kif(U(ti)), (54.18)

where 0 = t0 < t1 < t2 . . . is a sequence of increasing discrete time levels
with time steps ki = ti − ti−1. To determine U(ti) ∈ Rn satisfying (54.18)
having already determined U(ti−1), we have to solve the nonlinear system
of equations

V = U(ti−1) + kif(V ) (54.19)

in the unknown V ∈ Rn. This equation is of the form V = g(V ) with
g(V ) = U(ti−1) + kif(V ) and g : Rn → Rn.

Therefore, we use the Fixed Point Iteration

V (m) = U(ti−1) + kif(V (m−1)), m = 1, 2, . . . ,

choosing say V (0) = U(ti−1) to try to solve for the new value. If Lf denotes
the Lipschitz constant of f : Rn → Rn, then

‖g(V ) − g(W )‖ = ‖ki(f(V ) − f(W ))‖ ≤ kiLf‖V −W‖, V,W ∈ Rn,

TS
c Is there an opening parenthesis missing here?

Editor’s or typesetter’s annotations (will be removed before the final TEX run)
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and thus g : Rn → Rn is Lipschitz continuous with Lipschitz constant
Lg = kiLf . Now Lg < 1 if the time step ki satisfies ki < 1/Lf and thus the
Fixed Point Iteration to determine U(ti) in (54.18) converges if ki < 1/Lf .
This gives a method for numerical solution of a very large class of initial
value problems of the form u̇(t) = f(u(t)) for t > 0, u(0) = u0. The only
restriction is to choose sufficiently small time steps, which however can be
a severe restriction if the Lipschitz constant Lf is very large in the sense
of requiring massive computational work (very small time steps). Thus,
caution for large Lipschitz constants Lf !!

54.17 The Inverse Function Theorem

Suppose f : Rn → Rn is a given function and let ȳ = f(x̄), where x̄ ∈ Rn

is given. We shall prove that if f ′(x̄) is non-singular, then for y ∈ Rn close
to ȳ, the equation

f(x) = y (54.20)

has a unique solution x. Thus, we can define x as a function of y for y close
to ȳ, which is called the inverse function x = f−1(y) of y = f(x). To show
that (54.20) has a unique solution x for any given y close to ȳ, we consider
the Fixed Point iteration for x = g(x) with g(x) = x− (f ′(x̄))−1(f(x)− y),
which has the fixed point x satisfying f(x) = y as desired. The iteration is

x(j) = x(j−1) − (f ′(x̄))−1(f(x(j−1)) − y), j = 1, 2, . . . ,

with x(0) = x̄. To analyze the convergence, we subtract

x(j−1) = x(j−2) − (f ′(x̄))−1(f(x(j−2)) − y)

and write ej = x(j) − x(j−1) to get

ej = ej−1 − (f ′(x̄))−1(f(x(j−1) − f(x(j−2)) for j = 1, 2, . . . .

The Mean Value theorem implies

fi(x
(j−1)) − fi(x

(j−2)) = f ′(z)ej−1,

where z lies on the straight line between x(j−1) and x(j−2). Note there
might be possibly different z for different rows of f ′(z). We conclude that

ej =
(
I − (f ′(x̄))−1f ′(z)

)
ej−1.

Assuming now that
‖I − (f ′(x̄))−1f ′(z)‖ ≤ θ, (54.21)

where θ < 1 is a positive constant, we have

‖ej‖ ≤ θ‖ej−1‖.
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As in the proof of the Contraction Mapping theorem, this shows that the
sequence {x(j)}∞j=1 is a Cauchy sequence and thus converges to a vec-
tor x ∈ Rn satisfying f(x) = y.

The condition for convergence is obviously (54.21). This condition is sat-
isfied if the coefficients of the Jacobian f ′(x) are Lipschitz continuous close
to x̄ and f ′(x̄) is non-singular so that (f ′(x̄))−1 exists, and we restrict y to
be sufficiently close to ȳ.

We summarize in the following (very famous):

Theorem 54.6 (Inverse Function theorem) Let f : Rn → Rn and as-
sume the coefficients of f ′(x) are Lipschitz continuous close to x̄ and f ′(x̄)
is non-singular. Then for y sufficiently close to ȳ = f(x̄), the equation
f(x) = y has a unique solution x. This defines x as a function x = f−1(y)
of y.

Carl Jacobi (1804–51), German mathematician, was the first to study the
role of the determinant of the Jacobian in the inverse function theorem, and
also gave important contributions to many areas of mathematics including
the budding theory of first order partial differential equations.

54.18 The Implicit Function Theorem

There is an important generalization of the Inverse Function theorem. Let
f : Rn × Rm → Rn be a given function with value f(x, y) ∈ Rn for x ∈ Rn

and y ∈ Rm. Assume that f(x̄, ȳ) = 0 and consider the equation in x ∈ Rn,

f(x, y) = 0,

for y ∈ Rm close to ȳ. In the case of the Inverse Function theorem we
considered a special case of this situation with f : Rn × R → Rn defined
by f(x, y) = g(x) − y with g : Rn → Rn.

We define the Jacobian f ′
x(x, y) of f(x, y) with respect to x at (x, y) to

be the n× n matrix with elements

∂fi

∂xj
(x, y).

Assuming now that f ′
x(x̄, ȳ) is non-singular, we consider the Fixed Point

iteration:

x(j) = x(j−1) − (f ′
x(x̄, ȳ))−1f(x(j−1), y),

connected to solving the equation f(x, y) = 0. Arguing as above, we can
show this iteration generates a sequence {x(j)}j=1∞ that converges
to x ∈ Rn satisfying f(x, y) = 0 assuming f ′

x(x, y) is Lipschitz continu-
ous for x close to x̄ and y close to ȳ. This defines x as a function g(y) of y
for y close to ȳ. We have now proved the (also very famous):
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Theorem 54.7 (Implicit Function theorem) Let f : Rn × Rm → Rn

with f(x, y) ∈ Rn and x ∈ Rn and y ∈ Rm, and assume that f(x̄, ȳ) = 0.
Assume that the Jacobian f ′

x(x, y) with respect to x is Lipschitz continuous
for x close to x̄ and y close to ȳ, and that f ′

x(x̄, ȳ) is non-singular. Then
for y close to ȳ, the equation f(x, y) = 0 has a unique solution x = g(y).
This defines x as a function g(y) of y.

54.19 Newton’s Method

We next turn to Newton’s method for solving an equation f(x) = 0 with
f : Rn → Rn, which reads:

x(i+1) = x(i) − f ′(x(i))−1f(x(i)), for i = 0, 1, 2, . . . , (54.22)

where x(0) is an initial approximation. Newton’s method corresponds to
Fixed Point iteration for x = g(x) with g(x) = x − f ′(x)−1f(x). We shall
prove that Newton’s method converges quadratically close to a root x̄ when
f ′(x̄) is non-singular. The argument is the same is as in the case n = 1
considered above. Setting ei = x̄ − x(i), and using x̄ = x̄ − f ′(x(i))−1f(x̄)
if f(x̄) = 0, we have

x̄− x(i+1) = x̄− x(i) − f ′(x(i))−1(f(x̄) − f(x(i)))

= x̄− x(i) − f ′(x(i))−1(f ′(x(i)) + Ef (x(i), x̄)) = f ′(x(i))−1Ef (x(i), x̄).

We conclude that

‖x̄− x(i+1)‖ ≤ C‖x̄− x(i)‖2

provided

‖f ′(x(i))−1‖ ≤ C,

where C is some positive constant. We have proved the following funda-
mental result:

Theorem 54.8 (Newton’s method) If x̄ is a root of f : Rn → Rn such
that f(x) is uniformly differentiable with a Lipschitz continuous derivative
close to x̄ and f ′(x̄) is non-singular, then Newton’s method for solving
f(x) = 0 converges quadratically if started sufficiently close to x̄.

In concrete implementations of Newton’s method we may rewrite (54.22)
as

f ′(x(i))z = −f(x(i)),

x(i+1) = x(i) + z,

where f ′(x(i))z = −f(x(i)) is a system of equations in z that is solved by
Gaussian elimination or by some iterative method.
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Example 54.18. We return to the equation (54.19), that is,

h(V ) = V − kif(V ) − U(ti−1) = 0.

To apply Newton’s method to solve the equation h(V ) = 0, we compute

h′(v) = I − kif
′(v),

and conclude that h′(v) will be non-singular at v, if ki < ‖f ′(v)‖−1. We
conclude that Newton’s method converges if ki is sufficiently small and we
start close to the root. Again the restriction on the time step is connected
to the Lipschitz constant Lf of f , since Lf reflects the size of ‖f ′(v)‖.

54.20 Differentiation Under the Integral Sign

Finally, we show that if the limits of integration of an integral are indepen-
dent of a variable x1, then the operation of taking the partial derivative
with respect x1 can be moved past the integral sign. Let then f : R2 → R
be a function of two real variables x1 and x2 and consider the integral

∫ 1

0

f(x1, x2) dx2 = g(x1),

which is a function g(x1) of x1. We shall now prove that

dg

dx1
(x̄1) =

∫ 1

0

∂f

∂x1
(x̄1, x2) dx2, (54.23)

which is referred to as “differentiation under the integral sign”. The proof
starts by writing

f(x1, x2) = f(x̄1, x2) +
∂f

∂x1
(x̄1, x2)(x1 − x̄1) + Ef (x1, x̄1, x2),

where we assume that

|Ef (x1, x̄1, x2)| ≤ Kf(x̄1 − x1)
2.

Taylor’s theorem implies this is true provided the second partial derivatives
of f are bounded. Integration with respect to x2 yields

∫ 1

0

f(x1, x2) dx2 =

∫ 1

0

f(x̄1, x2) dx2

+ (x1 − x̄1)

∫ 1

0

∂f

∂x1
(x̄1, x2) dx2 +

∫ 1

0

Ef (x1, x̄1, x2) dx2.
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Since
∣∣∣∣
∫ 1

0

Ef (x1, x̄1, x2) dx2

∣∣∣∣ ≤ Kf(x̄1 − x1)
2

(54.23) follows after dividing by (x1 − x̄1) and taking the limit as x1 tends
to x̄1. We summarize:

Theorem 54.9 (Differentiation under the integral sign) If the sec-
ond partial derivatives of f(x1, x2) are bounded, then for x1 ∈ R,

d

dx1

∫ 1

0

f(x1, x2) dx2 =

∫ 1

0

∂f

∂x1
(x1, x2) dx2 (54.24)

Example 54.19.

d

dx

∫ 1

0

(1 + xy2)−1 dy =

∫ 1

0

∂

∂x
(1 + xy2)−1 dy = −

∫ 1

0

y2

(1 + xy2)2
dy.

Chapter 54 Problems

54.1. Sketch the following surfaces in R3: (a) Γ = {x : x3 = x2
1 + x2

2}, (b)
Γ = {x : x3 = x2

1 − x2
2}, (c) Γ = {x : x3 = x1 + x2

2}, (d) Γ = {x : x3 = x4
1 + x6

2}.
Determine the tangent planes to the surfaces at different points.

54.2. Determine whether the following functions are Lipschitz continuous or not
on {x : |x| < 1} and determine Lipschitz constants:

� (a) f : R3 → R3 where f(x) = x|x|2,
� (b) f : R3 → R where f(x) = sin |x|2,
� (c) f : R2 → R3 where f(x) = (x1, x2, sin |x|2),
� (d) f : R3 → R where f(x) = 1/|x|,
� (e) f : R3 → R3 where f(x) = x sin(|x|), (optional)
� (f) f : R3 → R where f(x) = sin(|x|)/|x|. (optional)

54.3. For the functions in the previous exercise, determine which are contractions
in {x : |x| < 1} and find their fixed points (optional).

54.4. Linearize the following functions on R3 at x = (1, 2, 3):

� (a) f(x) = |x|2,
� (b) f(x) = sin(|x|2),
� (c) f(x) = (|x|2, sin(x2)),
� (d) f(x) = (|x|2, sin(x2), x1x2 cos(x3)).
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54.5. Compute the determinant of the Jacobian of the following functions: (a)
f(x) = (x3

1 − 3x1x
2
2, 3x1x

2
2 − x3

2), (b) f(x) = (x1e
x2 cos(x3), x1e

x2 sin(x3), x1e
x2).

54.6. Compute the second order Taylor polynomials at (0, 0, 0) of the following
functions f : R3 → R: (a) f(x) =

√
1 + x1 + x2 + x3, (b) f(x) = (x1 − 1)x2x3,

(c) f(x) = sin(cos(x1x2x3)), (d) exp(−x2
1−x2

2−x2
3), (e) try to estimate the errors

in the approximations in (a)-(d).

54.7. Linearize f ◦ s, where f(x) = x1x2x3 at t = 1 with (a) s(t) = (t, t2, t3),
(b) s(t) = (cos(t), sin(t), t), (c) s(t) = (t, 1, t−1).

54.8. Evaluate
∫∞
0
yne−xy dy for x > 0 by repeated differentiation with respect

to x of
∫∞
0
e−xy dy.

54.9. Try to minimize the function u(x) = x2
1+x

2
2+2x2

3 by starting at x = (1, 1, 1)
using the method of steepest descent. Seek the largest step length for which the
iteration converges.

54.10. Compute the roots of the equation (x2
1 −x2

2 −3x1 +x2 +4, 2x1x2 −3x2 −
x1 + 3) = (0, 0) using Newton’s method.

54.11. Generalize Taylor’s theorem for a function f : Rn → R to third order.

54.12. Is the function f(x1, x2) =
x2

1 − x2
2

x2
1 + x2

2

Lipschitz continuous close to (0, 0)?

Jacobi and Euler were kindred spirits in the way they created their
mathematics. Both were prolific writers and even more prolific calcu-
lators; both drew a great deal of insight from immense algorithmical
work; both laboured in many fields of mathematics (Euler, in this re-
spect, greatly surpassed Jacobi); and both at any moment could draw
from the vast armoury of mathematical methods just those weapons
which would promise the best results in the attack of a given prob-
lem. (Sciba)


