March 1, 2006



Johan Hoffman and Anders Logg

www.fenics.org

Visit http://www.fenics.org/ for the latest version of this manual. Send comments and suggestions to puffin-dev@fenics.org.

# Contents

| 1 | Introduction                           |                                      | 5  |  |
|---|----------------------------------------|--------------------------------------|----|--|
| 2 | Mesh format                            |                                      | 7  |  |
| 3 | Specifying the variational formulation |                                      | 9  |  |
| 4 | The function AssembleMatrix()          |                                      | 13 |  |
| 5 | The function AssembleVector()          |                                      | 15 |  |
| 6 | Example programs                       |                                      | 17 |  |
|   | 6.1                                    | The program PoissonSolver            | 17 |  |
|   | 6.2                                    | The program ConvDiffStationarySolver | 17 |  |
|   | 6.3                                    | The program ConvDiffTimeDepSolver    | 17 |  |

## Introduction

Puffin is a simple and minimal implementation of FEniCS for Octave (MATLAB). It is based around the two functions AssembleMatrix() and AssembleVector(), which are used to assemble a linear system

$$AU = b, \tag{1.1}$$

representing a variational formulation of a differential equation,

$$a(u, v; w) = l(v; w) \quad \forall v \in V,$$
(1.2)

where a(u, v; w) is a bilinear form in u (the trial function) and v (the test function), and l(v; w) is a linear form in v. The bilinear form a and the linear form l are allowed to depend on a vector w (the coefficients), and are referred to as the left-hand side and the right-hand side of the variational formulation.

# Mesh format

The mesh is assumed to be given by the three matrices points, edges, and triangles, representing the *points*, *edges*, and *triangles* of an unstructured triangular mesh in the plane.

**FIXME:**Add detailed description of the format.

# Specifying the variational formulation

A variational formulation is given as a function in the following way:

```
function integral = MyForm(u, v, w, du, dv, dw, dx, ds, x, d, t, eq)
if eq == 1
    integral = ... * dx + ... * ds;
else
    integral = ... * dx + ... * ds;
end
```

The output argument integral should be the integral of the left-hand or right-hand side (depending on the value of eq) of the variational formulation over a triangle (with area dx) or an edge (with length ds).

The input arguments are given by

- u: the value of the trial function u,
- v: the value of the test function v,

- w: a vector of coefficient values (optional),
- du: the gradient  $\nabla u$  of the trial function u,
- dv: the gradient  $\nabla v$  of the test function v,
- dw: a matrix of coefficient gradients (optional),
- dx: the area of the current triangle (zero if we are on an edge),
- ds: the length of the current edge (zero if we are on a triangle),
- x: the current quadrature point,
- d: the current domain number or edge number,
- t: the value of time,
- eq: specifies left-hand side (1) or right-hand side (2) of the variational formulation.

As an example, consider the specification of the variational formulation for Poisson's equation. The variational formulation in mathematical notation is given by

$$\int_{\Omega} \nabla u \cdot \nabla v \, dx + \int_{\Gamma} \gamma u v \, ds = \int_{\Omega} f v \, dx + \int_{\Gamma} (\gamma g_D - g_N) v \, ds \quad \forall v.$$
(3.1)

For a certain choice of a, f,  $\gamma$ ,  $g_D$ , and  $g_N$ , this can be specified by a function **Poisson()** as follows.

```
function integral = Poisson(u, v, w, du, dv, dw, dx, ds, x, d, t, eq)
if eq == 1
    integral = du'*dv*dx + g(x,d,t)*u*v*ds;
else
    integral = f(x,d,t)*v*dx + (g(x,d,t)*gd(x,d,t) - gn(x,d,t))*v*ds;
end
```

%--- Conductivity (penalty factor) ---

```
function y = g(x, d, t)
y = 1e7;
%--- Dirichlet boundary condition ----
function y = gd(x, d, t)
y = 0;
%--- Neumann boundary condition ---
function y = gn(x, d, t)
y = 0;
%--- Right-hand side, source term ----
function y = f(x, d, t)
y = 5*pi^2*sin(pi*x(1))*sin(2*pi*x(2));
```

### The function AssembleMatrix()

The syntax of the function AssembleMatrix() is

```
A = AssembleMatrix(points, edges, triangles, pde, W, time),
```

where the output argument is A, the matrix to be assembled, and the input arguments are given by

- points: the matrix containing the node coordinates of the mesh,
- edges: the matrix containing the edges of the mesh,
- triangles: the matrix containing the triangles of the mesh,
- pde: the name of the function specifying the variational formulation,
- W: a matrix where each column contains the nodal values of additional functions (coefficients) appearing in the variational formulation as the functions w(1), w(2) and so on (leave empty ([]) if not needed),
- time: the value of time (the variable t in the variational formulation).

### The function AssembleVector()

The syntax of the function AssembleVector() is

b = AssembleVector(points, edges, triangles, pde, W, time),

where the output argument is **b**, the vector to be assembled, and the input arguments are given by

- points: the matrix containing the node coordinates of the mesh,
- edges: the matrix containing the edges of the mesh,
- triangles: the matrix containing the triangles of the mesh,
- pde: the name of the function specifying the variational formulation,
- W: a matrix where each column contains the nodal values of additional functions (coefficients) appearing in the variational formulation as the functions w(1), w(2) and so on (leave empty ([]) if not needed),
- time: the value of time (the variable t in the variational formulation).

## **Example programs**

#### 6.1 The program PoissonSolver

The program PoissonSolver solves Poisson's equation on the unit square, using the variational formulation specified by the function Poisson().

#### 6.2 The program ConvDiffStationarySolver

The program ConvDiffStationarySolver solves the stationary convectiondiffusion equation around a cylinder, using the variational formulation specified by the function ConvDiffStationary().

#### 6.3 The program ConvDiffTimeDepSolver

The program ConvDiffTimeDepSolver solves the time-dependent convection-diffusion equation on the unit square, using the variational formulation specified by the function ConvDiffTimeDep().