
0.5
setgray0

0.5
setgray1

A compiler for variational forms -
practical results

USNCCM8

Johan Jansson

johanjan@math.chalmers.se

Chalmers University of Technology

Acknowledgements: Anders Logg and the FEniCS members

A compiler for variational forms - practical results – p. 1

Overview

Part I - FEniCS Form Compiler (FFC):

Motivation for FFC (generality of FEM)

Introduction to FFC

Benchmarks (FFC vs. quadrature)

Part II - Application (Elasto-Plasticity):

Motivation for elasto-plastic model

Implementation of elasto-plastic model in FFC

Benchmarks (FFC vs. mass-spring)

Future work

A compiler for variational forms - practical results – p. 2

Motivation for FFC

FEniCS project: Automation of Computational Mathematical
Modeling (ACMM)

Finite Element Method: General method for automating
discretization of differential equations

This generality is seldom reflected in software

Reasons: conceptual complexity, hand-written routines
often outperform general routines

How can we overcome these difficulties?

Through a Form Compiler which automatically generates
an optimal Finite Element routine (assembly)

A compiler for variational forms - practical results – p. 3

Motivation for FFC

Advantages of compilation:

A form compiler can be written in a high-level language
and/or with high-level data structures which eases
conceptual abstraction.

A form compiler can pre-compute quantities which are
known at compile time.

Disadvantages of compilation:

Forms cannot easily be modified during run time.

A compiler for variational forms - practical results – p. 4

FFC: the FEniCS Form Compiler

Automates a key step in the implementation of finite
element methods for partial differential equations

Input: a variational form and a finite element

Output: optimal C/C++

Poisson.h

PSfrag replacements

FFC� ��� � � � � � 	 � ��
 ��� 	� ��
 �

>> ffc [-l language] poisson.form

A compiler for variational forms - practical results – p. 5

Basic example: Poisson’s equation

Strong form: Find � � � � � � �

with � � �

on

� �

such that

� � � � �

in

�

Weak form: Find � � 	
� � � �

such that

�
	 � ��
 �� 	� �
 �

 �

�
� ��
 � � ��
 �

 for all � � 	
� � � �

Standard notation: Find � � �
such that

� � � � � � �
 � � �
for all � � � �

with �� � ��� � � �

a bilinear form and

�� � � � �

a linear
form (functional)

A compiler for variational forms - practical results – p. 6

Obtaining the discrete system

Let

�

and

� �

be discrete function spaces. Then

� ��� � � � �
 � � �

for all � � � �
is a discrete linear system for the approximate solution� � �.
With

� � �� �� �� � 	

���
 and

� � � �� �� � �� � 	

��
 , we obtain the

linear system

 � �
for the degrees of freedom
 � �
 � � of

� �

���

 � � �, where

 �� � � � �� � � � � �

� � �
 � �� � �

A compiler for variational forms - practical results – p. 7

Computing the linear system: assembly

Noting that � � � � � � � ��� � � � � � � � � ,
the matrix

can be assembled by

 � �

for all elements

� �

+=

 �

The element matrix

 �

is defined by

 �
�� � � � � �� � � � � �

for all local basis functions

�� � and

� � on

�

A compiler for variational forms - practical results – p. 8

Multi-linear forms

Consider a multi-linear form

�� �
 � � � � � � � � ��
�

� �
with

�
 � � � � � � � � ��
� function spaces on the domain

�

Typically, � � �

(linear form) or � � �

(bilinear form)

Assume

�
 � � � � � � � � ��
� � �

for ease of notation

Want to compute the rank � element tensor

 �

defined by

 �
� � � � �� ��� � � ��	 � � � � � � ��

�

with

�� � 	 ���
 the local basis on

�

and multi-index

 � �

 �
 � � � � � �
 � �
A compiler for variational forms - practical results – p. 9

Tensor representation

In general, the element tensor

 �

can be represented as
the product of a reference tensor

 �

and a geometry tensor� �:
 �
� �
 �
��� ��
�

 �

: a tensor of rank

�
 � � ��� � � � � � � �

� �: a tensor of rank

��� �

Basic idea:

Precompute

 �

at compile-time

Generate optimal code for run-time evaluation of

� � and
the product

 �
��

��
�

A compiler for variational forms - practical results – p. 10

Example: Poisson

Form:

� ��� � � � �
�

	� ��
 �� 	 � �
 �

Evaluation:

 �
� �

�
	� � �
��
 ��� 	� �	
��
 �

� ��� � � � �
�� � �

�
 �
�� � 	

�
 � �	�
�
 ��

�� � �
�
 �	

�� � 	

 � �
 �

��� ��
�

with

 �
��� � ���

�
	� ��� � �
�
	� 	�� �	

 �
and

��
� � � � � � �
�

�� � �����
�� �	� ��

A compiler for variational forms - practical results – p. 11

Basic usage: compiling a form

1. Implement the form using your favorite text editor
(emacs):

2. Compile the form using FFC:

>> ffc poisson.form

This will generate C++ code (Poisson.h) for DOLFIN
A compiler for variational forms - practical results – p. 12

Example: Classical Elasticity

FFC representation (Elasticity.form):
The bilinear form for classical linear elasticity

Compile this form with FFC: ffc Elasticity.form.

element = FiniteElement("Lagrange", "tetrahedron", 1)

c1 = Constant() # Lame coefficient

c2 = Constant() # Lame coefficient

f = Function(element) # Source

v = BasisFunction(element)

u = BasisFunction(element)

a = (2.0 * c1 * u[i].dx(i) * v[j].dx(j) +

c2 * (u[i].dx(j) + u[j].dx(i)) * (v[i].dx(j) + v[j].dx(i))) * dx

L = f[i] * v[i] * dx

A compiler for variational forms - practical results – p. 13

Example: Classical Elasticity

FFC output (Elasticity.h):
BilinearForm(const real& c0, const real& c1) : ...

bool interior(real* block) const

{

// Compute geometry tensors

real G0_0_0_0_0 = det*c0*g00*g00;

real G0_0_0_0_1 = det*c0*g00*g10;

...

// Compute element tensor

block[0] =

3.333333333333329e-01*G0_0_0_0_0 + 3.333333333333329e-01*G0_0_0_0_1 +

3.333333333333329e-01*G0_0_0_0_2 + 3.333333333333329e-01*G0_0_0_1_0 +

3.333333333333329e-01*G0_0_0_1_1 + 3.333333333333329e-01*G0_0_0_1_2 +

3.333333333333329e-01*G0_0_0_2_0 + 3.333333333333329e-01*G0_0_0_2_1 +

3.333333333333329e-01*G0_0_0_2_2 + 1.666666666666664e-01*G1_0_0 +

1.666666666666664e-01*G1_0_1 + 1.666666666666664e-01*G1_0_2 +

1.666666666666664e-01*G1_1_0 + 1.666666666666664e-01*G1_1_1 +

...

A compiler for variational forms - practical results – p. 14

Impressive speedups

�� � � �� � � � � � �� � �	
��
� � �	 � �� � �� �� � � �

�
��� �

��� �
��� �

��� �
�

�
��

�
 !

"
#

$%
&

'
(

)"
�

$

*+ � ,
� � +
	

- -.

A compiler for variational forms - practical results – p. 15

Results

� � � � � � � �

�� 	

�� �

��

�� �

��

�� �

�� �
��

� �
�

�

��� ��� �� ��

� �

� � � � � � � �

!

�� 	

�� �

��

�� �

��

�� �

�� "

�� �
��

� �
�

�

��� ��� �� ��

� �

A compiler for variational forms - practical results – p. 16

Results

� � � � � � � �

�� 	

�� �

��

�� �

��

�� �

�� �
��

� �
�

�

��� ��� �� ��

� �

� � � � � � �

!

�� �
��

�� �
��

�� �
�� "

�� �
��

� �
�

�

��� ��� �� ��

� �

A compiler for variational forms - practical results – p. 17

Results

� ��� � � �� � �

� � �
� � �

� � 	

�
�

�
� �

�
�

��� ��� �� ��

� ��

� ��� � � �� � �

�

� � �
� � �

� � 	
� � �

� � �
� � �

�
�

�
� �

�
�

��� ��� �� ��

� ��

A compiler for variational forms - practical results – p. 18

Results

� ��� � � �� � �

� � �
� � �

� � 	

�
�

�
� �

�
�

��� ��� �� ��

� ��

� ��� � � �� � �

�

� � �
� � �

� � 	
� � �

� � �
� � �

�
�

�
� �

�
�

��� ��� �� ��

� ��

A compiler for variational forms - practical results – p. 19

Motivation for elasto-plastic model

State of the art computer games use rigid body motion with
joints (Half Life 2).

Motion pictures primarily use animation by hand, some
cases of mass-spring simulation (hair, cloth).

Why don’t these applications use more advanced/general
models?

Traditional elasticity models are difficult to understand �

difficult to apply, use effectively.

Attempt to find a simple model, attempt to automate
discretization of model.

A compiler for variational forms - practical results – p. 20

Previous work - mass-spring model

Can we find an analogous PDE-model?

A compiler for variational forms - practical results – p. 21

Simple derivation of model

Classical linear elasticity:

� �
 � � �

� � � � � �

in

� �
�

�� � 	� � � �

in

� �
�

� � ��� � � � � � � 	 � � � 	 � �

��� � �
�

� � � � � �
	 � �

� � � �� � � � �
� � � � �� � � � �

in

� �
�

Only works for small displacements. Computations carried out on fixed
geometry

� �

. Why not use the deformed geometry

�
�� �

?

A compiler for variational forms - practical results – p. 22

The elastic model

Formulate the model in the deformed geometry
� ��� �

(updated Lagrange):

� � � � � �

in

� � � �
�

�� � 	� � � �

in

� � � �
�

� � � ��� � � � � � � 	� � � 	� �

� � � �� � � � �
� � � � �� � � � �

in

� �
�

The model is a piecewise linear elastic model. Given some
geometry

� � we compute using the linear model (small
displacements) for a small time step/iteration and produce
the geometry

� � �
 . The process is then repeated.

A compiler for variational forms - practical results – p. 23

Examples

Elastic bar (Updated Lagrange)

Elastic bar (Mass-spring)

Elastic bar (Classical elasticity)
A compiler for variational forms - practical results – p. 24

Viscosity

�� � 	� � � �

	� � � � � � �

in

� � � �
We add a simple viscous term to model viscosity in
materials.

A compiler for variational forms - practical results – p. 25

Plasticity

� � � � � � � � � �
�

���
� � � � � � � in

� � � �
�

� � �
�

� � � �
� � � � ��
�

� � � � �
� � � � ��
�

Visco-plastic model. � � is the projection on to the set of
admissible stresses.

�
� is the yield stress of the material.

A compiler for variational forms - practical results – p. 26

Examples (Plasticity)

Plastic bar

A compiler for variational forms - practical results – p. 27

Implementation in FFC

FFC representation (ElasticityUpdated.form):
Form for updated elasticity (velocity)

element1 = FiniteElement("Discontinuous vector Lagrange", "tetrahedron", 0)

element2 = FiniteElement("Vector Lagrange", "tetrahedron", 1)

nu = Constant() # viscosity coefficient

w = BasisFunction(element2)

f = Function(element2)

sigma0 = Function(element1)

epsilon0 = Function(element1)

L = (f[i] * v[i] -

(sigma0[i] * w[0].dx(i) +

sigma1[i] * w[1].dx(i) +

sigma2[i] * w[2].dx(i)) -

nu * (

epsilon0[i] * w[0].dx(i) +

epsilon1[i] * w[1].dx(i) +

epsilon2[i] * w[2].dx(i))) * dx

A compiler for variational forms - practical results – p. 28

Implementation in FFC

FFC representation (ElasticityUpdatedSigma0.form):
Form for updated elasticity (stress component 0)

element1 = FiniteElement("Vector Lagrange", "tetrahedron", 1)

element2 = FiniteElement("Discontinuous vector Lagrange", "tetrahedron", 0)

c1 = Constant() # Lame coefficient

c2 = Constant() # Lame coefficient

nuplast = Constant() # Plastic viscosity

q = BasisFunction(element2)

v = Function(element1)

sigma0 = Function(element2)

sigmanorm = Function(element2) # Norm of sigma (stress)

Lplast = ((c1 * (sigma0[0] + sigma1[1] + sigma2[2]) * q[0]) +

(c2 * sigma0[i] * q[i]))

Lelast = ((2 * c1 * v[i].dx(i) * q[0]) +

(c2 * (v[i].dx(0) + v[0].dx(i))) * q[i])

L = (Lelast - nuplast * (1 - sigmanorm[0]) * Lplast) * dx

A compiler for variational forms - practical results – p. 29

General examples

Visco-elastic cow

Plastic cow

Real time simulation

A compiler for variational forms - practical results – p. 30

Updated elasticity vs. mass-spring

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 1000 2000 3000 4000 5000 6000 7000

tim
e

cells

FFC
mass-spring

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 1000 2000 3000 4000 5000 6000 7000

tim
e

cells

FFC
mass-spring

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 1000 2000 3000 4000 5000 6000 7000

tim
e

cells

FFC
mass-spring

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 1000 2000 3000 4000 5000 6000 7000

tim
e

cells

FFC
mass-spring

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 1000 2000 3000 4000 5000 6000 7000

tim
e

cells

FFC
mass-spring

A compiler for variational forms - practical results – p. 31

Time / dof

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0 1000 2000 3000 4000 5000 6000 7000

tim
e

cells

FFC
mass-spring

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0 1000 2000 3000 4000 5000 6000 7000

tim
e

cells

FFC
mass-spring

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0 1000 2000 3000 4000 5000 6000 7000

tim
e

cells

FFC
mass-spring

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0 1000 2000 3000 4000 5000 6000 7000

tim
e

cells

FFC
mass-spring

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0 1000 2000 3000 4000 5000 6000 7000

tim
e

cells

FFC
mass-spring

A compiler for variational forms - practical results – p. 32

Profiling

Spends 90% assembling, only 10% actually evaluating
form, could likely be optimized further

%time calls name

Flat:

15.86 226382058 dolfin::Function::interpolate()

8.04 41162058 dolfin::AffineMap::updateTetrahedron()

3.23 10290000 dolfin::ElasticityUpdated::LinearForm::eval()

3.23 740882058 dolfin::Cell::id() const

2.57 617498784 dolfin::GenericCell::nodeID() const

2.46 10290000 dolfin::ElasticityUpdatedSigma2::LinearForm::eval()

2.30 10290000 dolfin::ElasticityUpdatedSigma0::LinearForm::eval()

2.15 10290000 dolfin::ElasticityUpdatedSigma1::LinearForm::eval()

Graph:

89.7 20000 dolfin::FEM::assemble()

49.8 41162058 dolfin::Form::updateCoefficients()

A compiler for variational forms - practical results – p. 33

Future work

FFC:

Independent comparisons for FFC - benchmark against
other PDE packages (also finite difference packages).

Extend the elastic model: contact, friction (mass-spring
model already does this).

Space adaptivity

Apply model in real applications (games for instance).

Interface to fluid mechanics (Navier-Stokes).

A compiler for variational forms - practical results – p. 34

	Overview
	Motivation for FFC
	Motivation for FFC
	FFC: the FEniCS Form Compiler
	Basic example: Poisson's equation
	Obtaining the discrete system
	Computing the linear system: assembly
	Multi-linear forms
	Tensor representation
	Example: Poisson
	Basic usage: compiling a form
	Example: Classical Elasticity
	Example: Classical Elasticity
	Impressive speedups
	Results
	Results
	Results
	Results
	Motivation for elasto-plastic model
	Previous work - mass-spring model
	Simple derivation of model
	The elastic model
	Examples
	Viscosity
	Plasticity
	Examples (Plasticity)
	Implementation in FFC
	Implementation in FFC
	General examples
	Updated elasticity vs. mass-spring
	Time / dof
	Profiling
	Future work

