A compiler for variational forms practical results

USNCCM8

Johan Jansson

johanjan@math.chalmers.se

Chalmers University of Technology

Acknowledgements: Anders Logg and the FEniCS members

Overview

Part I - **FEniCS** Form Compiler (FFC):

- Motivation for FFC (generality of FEM)
- Introduction to FFC
- Benchmarks (FFC vs. quadrature)
- Part II Application (Elasto-Plasticity):
	- Motivation for elasto-plastic model
	- Implementation of elasto-plastic model in FFC
	- Benchmarks (FFC vs. mass-spring)
	- Future work

Motivation for FFC

FEniCS project: Automation of Computational Mathematical Modeling (ACMM)

Finite Element Method: General method for automating discretization of differential equations

This generality is seldom reflected in software

Reasons: conceptual complexity, hand-written routines often outperform general routines

How can we overcome these difficulties?

Through ^a Form Compiler which automatically generates an optimal Finite Element routine (assembly)

Motivation for FFC

Advantages of compilation:

- A form compiler can be written in ^a high-level language and/or with high-level data structures which eases conceptual abstraction.
- A form compiler can pre-compute quantities which are known at compile time.

Disadvantages of compilation:

Forms cannot easily be modified during run time.

FFC: the FEniCS Form Compiler

- Automates a key step in the implementation of finite element methods for partial differential equations
- **•** Input: a variational form and a finite element
- Output: optimal C/C++

$$
a(v, u) = \int_{\Omega} \nabla u(x) \cdot \nabla v(x) dx
$$

>> ffc [-l language] poisson.form

Basic example: Poisson's equation

Strong form: Find $u\in\mathcal{C}^2(\overline{\Omega})$ with $u=0$ on $\partial\Omega$ such that

$$
-\Delta u = f \quad \text{in } \Omega
$$

Weak form: Find
$$
u \in H_0^1(\Omega)
$$
 such that

\n
$$
\int_{\Omega} \nabla u(x) \cdot \nabla v(x) \, dx = \int_{\Omega} f(x)v(x) \, dx \quad \text{for all } v \in H_0^1(\Omega)
$$
\nStandard notation: Find $u \in V$ such that

\n
$$
a(v, u) = L(v) \quad \text{for all } v \in \hat{V}
$$

Standard notation: Find $u \in V$ such that

$$
a(v, u) = L(v) \quad \text{for all } v \in \hat{V}
$$

with $a: \hat{V} \times V \to \mathbb{R}$ a *bilinear form* and $L: \hat{V} \to \mathbb{R}$ a *linear form* (functional)

Obtaining the discrete system

Let V and V be discrete function spaces. Then

$$
a(v,U) = L(v) \quad \text{for all } v \in \hat{V}
$$

With $V = \text{span}\{\phi_i\}_{i=1}^M$ $U)=L($ system fo is a discrete linear system for the approximate solution <u>in a shekara t</u> . $\frac{M}{-1}$ and $V = \text{span}\{\hat{\phi}_i\}_{i=1}^M$, we obtain the $\begin{array}{c}\n=1 \\
\end{array}$ linear system

$$
Ax = b
$$

for the degrees of freedom $x=(x_i)$ of $U=\sum_{i=1}^M a_i$ $\stackrel{''}{\rule{0pt}{0.15ex}\smash{\sim}}{}_{-1} x_i \phi_i,$ where

$$
A_{ij} = a(\hat{\phi}_i, \phi_j)
$$

$$
b_i = L(\hat{\phi}_i)
$$

Computing the linear system: assembly

Noting that $a(v,u) = \sum_{K\in\mathcal{T}} a_K(v,u),$ the matrix A can be assembled by

$$
A = 0
$$

for all elements $K \in \mathcal{T}$

$$
A += A^K
$$

The element matrix A^K

$$
^{K} \text{ is defined by}
$$

$$
A_{ij}^{K} = a_{K}(\hat{\phi}_{i}, \phi_{j})
$$

ions
$$
\hat{\phi}_{i} \text{ and } \phi_{j} \text{ o}
$$

for all local basis functions $\hat{\phi}_i$ and ϕ_i on K

Multi-linear forms

Consider a multi-linear form

 $\cdot V_1 \times V_2 \times \ldots \times V \to \mathbb{R}$

with V_1,V_2,\ldots .

- $\frac{V_2}{\text{all}}$ V_r function spaces on the domain Ω
= 1 (linear form) or $r=2$ (bilinear forr Typically, $r=1$ (linear form) or $r=2$ (bilinear form)
- Assume $V_1=V_2=\cdots=V_r=V$ for ease of notation

$$
A_i^K = a_K(\phi_{i_1}, \phi_{i_2}, \dots, \phi_{i_r})
$$

Want to compute the rank r element tensor A^K defined by
 $A^K_i = a_K(\phi_{i_1}, \phi_{i_2}, \ldots, \phi_{i_r})$

with $\{\phi_i\}_{i=1}^n$ the local basis on K and multi-index $\mathbf{A}^{\mathbf{A}}=a_{K}(\phi_{i_{1}},\phi_{i_{2}},\ldots,\phi_{i_{r}})$
al basis on K and multi with $\{\phi_i\}_{i=1}^n$ the local basis on K and multi-index $=1$
 \cdot $=$ (i_1) $\frac{i_2}{2}$ ---- $\sum_{i=1}^{n}$ $\binom{1}{2}$

Tensor representation

In general, the element tensor A^K can be represented as A^0 and a geometry tens
 $\widetilde{A}^{\alpha}_{K}$ the product of a *reference tensor* A^0 and a *geometry tensor*
 G_K :
 $A_i^K = A_{i\alpha}^0 G_K^\alpha$ K :

$$
A_i^K = A_{i\alpha}^0 G_K^{\alpha}
$$

$$
|A_i| + |\alpha| = r + |\alpha|
$$

- $\frac{1}{2}$ 0 : a tensor of rank $|i| + |\alpha| = r + |\alpha|$
'_K: a tensor of rank $|\alpha|$
ic idea:
- α : a tensor of rank $|\alpha|$

Basic idea:

- Precompute A^0 at compile-time
- at compile-time
al code for run-t G_K^α Generate optimal code for run-time evaluation of G_K and the product $A^0_{i\alpha}G^\alpha_K$

Example: Poisson

Form:

$$
a(v, u) = \int_{\Omega} \nabla v(x) \cdot \nabla u(x) dx
$$

C Evaluation:

$$
A_i^K = \int_K \nabla \phi_{i_1}(x) \cdot \nabla \phi_{i_2}(x) dx
$$

= det $F'_K \frac{\partial X_{\alpha_1}}{\partial x_{\beta}} \frac{\partial X_{\alpha_2}}{\partial x_{\beta}} \int_{K_0} \frac{\partial \Phi_{i_1}}{\partial X_{\alpha_1}} \frac{\partial \Phi_{i_2}}{\partial X_{\alpha_2}} dX = A_{i\alpha}^0 G_K^{\alpha}$
th $A_{i\alpha}^0 = \int_{K_0} \frac{\partial \Phi_{i_1}}{\partial X_{\alpha_1}} \frac{\partial \Phi_{i_2}}{\partial X_{\alpha_2}} dX$ and $G_K^{\alpha} = \det F'_K \frac{\partial X_{\alpha_1}}{\partial x_{\beta}} \frac{\partial X_{\alpha_2}}{\partial x_{\beta}}$

with
$$
A_{i\alpha}^0 = \int_{K_0} \frac{\partial \Phi_{i_1}}{\partial X_{\alpha_1}} \frac{\partial \Phi_{i_2}}{\partial X_{\alpha_2}} dX
$$
 and $G_K^{\alpha} = \det F_K' \frac{\partial X_{\alpha_1}}{\partial x_{\beta}} \frac{\partial X_{\alpha_2}}{\partial x_{\beta}}$

Basic usage: compiling ^a form

1. Implement the form using your favorite text editor (emacs):

2. Compile the form using **FFC**:

>> ffc poisson.form

This will generate C++ code (Poisson.h) for **DOLFIN**

Example: Classical Elasticity

FFC representation (Elasticity.form):

The bilinear form for classical linear elasticity # Compile this form with FFC: ffc Elasticity.form.

element ⁼ FiniteElement("Lagrange", "tetrahedron", 1)

c1 ⁼ Constant() # Lame coefficient c2 ⁼ Constant() # Lame coefficient f ⁼ Function(element) # Source

```
v = BasisFunction(element)
u = BasisFunction(element)
a = (2.0 * c1 * u[i].dx(i) * v[j].dx(j) +
          c2 * (u[i].dx(j) + u[j].dx(i)) * (v[i].dx(j) + v[j].dx(i))) * dx
L = f[i] * v[i] * dx
```
Example: Classical Elasticity

```
\mathsf{FFC} output (Elasticity.h):
 BilinearForm(const real& c0, const real& c1) : ...
 bool interior(real* block) const
 {
   // Compute geometry tensors
   real G0_0_0_0_0 = det*c0*g00*g00;
   real G0_0_0_0_1 = det*c0*g00*g10;
    ...
   // Compute element tensor
   block[0] =3.333333333333329e-01*G0_0_0_0_0 + 3.333333333333329e-01*G0_0_0_0_1 +
   3.333333333333329e-01*G0_0_0_0_2 + 3.333333333333329e-01*G0_0_0_1_0 +
   3.333333333333329e-01*G0_0_0_1_1 + 3.333333333333329e-01*G0_0_0_1_2 +
   3.333333333333329e-01*G0_0_0_2_0 + 3.333333333333329e-01*G0_0_0_2_1 +
   3.333333333333329e-01*G0_0_0_2_2 + 1.666666666666664e-01*G1_0_0 +
   1.66666666666664e-01*G1 01 + 1.66666666666664e-01*G1 02 +1.66666666666664e-01*G110 + 1.66666666666664e-01*G11 +
```
...

Impressive speedups

Motivation for elasto-plastic model

State of the art computer games use rigid body motion with joints (Half Life 2).

Motion pictures primarily use animation by hand, some cases of mass-spring simulation (hair, cloth).

Why don't these applications use more advanced/general models?

Traditional elasticity models are difficult to understand \Rightarrow difficult to apply, use effectively.

Attempt to find ^a simple model, attempt to automate discretization of model.

Previous work - mass-spring model

Can we find an analogous PDE-model?

Simple derivation of model

Classical linear elasticity:

$$
u = x - X,
$$

\n
$$
\dot{u} - v = 0 \quad \text{in } \Omega^0,
$$

\n
$$
\dot{v} - \nabla \cdot \sigma = f \quad \text{in } \Omega^0,
$$

\n
$$
\sigma = E\epsilon(u) = E(\nabla u^\top + \nabla u)
$$

\n
$$
E\epsilon = \lambda \sum_k \epsilon_{kk} I + 2\mu \epsilon,
$$

\n
$$
v(0, \cdot) = v^0, \quad u(0, \cdot) = u^0 \quad \text{in } \Omega^0
$$

, $u(0, \cdot) = u^0$ in Ω^0 .
ents. Computations carried
deformed geometry $\Omega(t)$? Only works for small displacements. Computations carried out on fixed geometry Ω^0 . Why not use the deformed geometry $\Omega(t)$?
-

The elastic model

Formulate the model in the deformed geometry $\Omega(t)$ (updated Lagrange):

> $\iota-v=0\quad$ in $\Omega(t),$ $\Gamma_{\epsilon}(\omega)$ $\Gamma(\nabla_{\omega} \Gamma + \nabla_{\omega})$ \mathbf{L} $\nabla \cdot \sigma = f$ in $\Omega(t)$,

 $v(0, \cdot) = v^0$, $u(0, \cdot) = u^0$ in Ω^0 .
piecewise linear elastic model. (
e compute using the linear mode
for a small time step/iteration ar The model is ^a piecewise linear elastic model. Given some geometry Ω_i we compute using the linear model (small displacements) for ^a small time step/iteration and produce the geometry Ω_{i+} . The process is then repeated.

Examples

Elastic bar (Updated Lagrange)

Elastic bar (Mass-spring)

Elastic bar (Classical elasticity)

Viscosity

$$
\dot{v} - \nabla \cdot \sigma - \nu \nabla \cdot \epsilon(v) = f \quad \text{in } \Omega(t)
$$

We add ^a simple viscous term to model viscosity in materials.

Plasticity

$$
\dot{\sigma} = E(\epsilon(v) - \frac{1}{\nu_p}(\sigma - \pi\sigma)) \text{ in } \Omega(t),
$$

$$
\pi\sigma = \frac{\sigma}{\|\sigma\|}, \|\sigma\| > Y_s
$$

$$
\pi\sigma = \sigma, \|\sigma\| \le Y_s
$$

 admissible stresses. Y_s is the yield stress of the material. $\|\sigma\| \leq$. $\pi\sigma$ is Visco-plastic model. $\pi\sigma$ is the projection on to the set of

Examples (Plasticity)

Plastic bar

Implementation in FFC

FFC representation (ElasticityUpdated.form):

Form for updated elasticity (velocity)

```
element1
= FiniteElement("Discontinuou
s vector Lagrange", "tetrahedron", 0)
element2
= FiniteElement("Vector Lagrange", "tetrahedron", 1)
```

```
nu
= Constant()
# viscosity coefficient
```

```
w
= BasisFunction(element2)
f= Function(element2)
sigma0
= Function(element1)
epsilon0
= Function(element1)
```

```
L= (f[i]
* v[i]
-(sigma0[i]
* w[0].dx(i)
+sigma1[i]
* w[1].dx(i)
+
sigma2[i]
* w[2].dx(i))
-nu* (
epsilon0[i]
* w[0].dx(i)
+
epsilon1[i]
* w[1].dx(i)
+epsilon2[i]
* w[2].dx(i)))
* dx
```
Implementation in FFC

FFC representation (ElasticityUpdatedSigma0.form):

Form for updated elasticity (stress component 0)

```
element1
= FiniteElement("Vector Lagrange", "tetrahedron", 1)
element2
= FiniteElement("Discontinuou
s vector Lagrange", "tetrahedron", 0)
```

```
c1
= Constant()
# Lame coefficient
c2
= Constant()
# Lame coefficient
nuplast
= Constant()
# Plastic viscosity
```

```
q
= BasisFunction(element2)
v= Function(element1)
sigma0
= Function(element2)
sigmanorm
= Function(element2)
# Norm of sigma (stress)
Lplast = ((c1 * (sigma0[0] + sigma1[1] + sigma2[2]) * q[0]) +
          (c2
* sigma0[i]
* q[i]))
Lelast = ((2 * c1 * v[i].dx(i) * q[0]) +
          (c2
* (v[i].dx(0)
+ v[0].dx(i)))
* q[i])
```
L = (Lelast - nuplast * (1 - sigmanorm[0]) * Lplast) * dx

General examples

Visco-elastic cow

Plastic cow

Real time simulation

Updated elasticity vs. mass-spring

Time / dof

Profiling

■ Spends 90% assembling, only 10% actually evaluating form, could likely be optimized further

%time calls name Flat:15.86 226382058 dolfin::Function::interpolate() 8.04 41162058 dolfin::AffineMap::updateTetrahedron() 3.23 10290000 dolfin::ElasticityUpdated::LinearForm::eval() 3.23 740882058 dolfin::Cell::id() const 2.57 617498784 dolfin::GenericCell::nodeID() const 2.46 10290000 dolfin::ElasticityUpdatedSigma2::LinearForm::eval() 2.30 10290000 dolfin::ElasticityUpdatedSigma0::LinearForm::eval() 2.15 10290000 dolfin::ElasticityUpdatedSigma1::LinearForm::eval() Graph:

89.7 20000 dolfin::FEM::assemble() 49.841162058 dolfin::Form::updateCoefficients()

Future work

FFC:

- Independent comparisons for FFC benchmark against other PDE packages (also finite difference packages).
- Extend the elastic model: contact, friction (mass-spring model already does this).
- Space adaptivity
- Apply model in real applications (games for instance).
- Interface to fluid mechanics (Navier-Stokes).