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Definitions

e Let  be a domain in R? (d = 1,2,3) with coordinates x
e The boundary is 90 =T, UL, T, NI, =0

o u: Q) — R%is the unknown fluid velocity

e p:Q — Ris the unknown fluid pressure

_ (Ouiyd
o Vu={52}¢_, NBI

e c(u) = 3(Vu+ Vu') is the strain rate tensor

e o(u,p) = 2ue(u) — pl is the Cauchy stress tensor
e pc Ris a given fluid density

e f is a given body force per unit volume

e g, is a given boundary velocity

e t. is a given boundary traction

® g is a given initial velocity
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The incompressible Navier—Stokes equations
Constitutive equations

plt+u-Vu) =V -o(u,p) =f inQx(0,7]
V.ou=0 inQx(0,T]

Boundary conditions

Initial condition
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Mixed variational formulation of Navier—Stokes

Multiply the momentum equation by a test function v and
integrate by parts:

/Qp(u—i—u-Vu)‘v dau—l—/Q o(u,p) :e(v)de = /Qf‘fu dCC+/ ty-vds

Iy

Short-hand notation: (-,-) is L?-inner product

{pti, v) + (pu - Vu,v) + (o(u, p), (v)) = (f,v) + (ty, v)r

Multiply the continuity equation by a test function ¢ and sum
up: find (u,p) € V such that
<p”[l,, 1)> + (pu - Vu, 1)> + (a(u,p), E(U» + <V U, q> = <f7 ’U> + <tN7 U>FN

for all (v,q) € V
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Discrete mixed variational form of Navier—Stokes

Time-discretization leads to a saddle-point problem on each
time step:

M+ AtA+ AtN(U) AtB Ul _|b
AtBT 0 Pl (o0
e Efficient solution of the saddle-point problem relies on the
efficiency of special-purpose preconditioners (Uzawa
iteration, Schur complement preconditioners, ... )

e We will use another approach (simpler and often more
efficient)
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Splitting scheme for Navier-Stokes: Core idea

e Solving the full coupled system for the velocity and the
pressure simultaneously is computationally expensive.

e To reduce computational cost, iterative splitting schemes
are an attractive alternative.

e Splitting schemes are typically based on solving for the
velocity and the pressure separately.

e We will consider a splitting scheme solving three different
(smaller!) systems at each time step n:

@ Compute the tentative velocity
® Compute the pressure
® Compute the corrected velocity

e Next slides show how the scheme is derived — time to pay
close attention!
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A splitting scheme for Navier—Stokes (Part 1/3)
Recall momentum equation:
p(t+u-Vu) =V -o(u,p)=f

Consider a time step (t,—1,t,) of length k, = t, — t,—1, and
introduce

u(t") ~ D™ = (u™ — u™ 1) [k,

1

Assume u" 7" is given, want to compute u".

A Crank-Nicolson approximation with explicit convection for
the time-discretization gives

thun + pun—l . vun—l ) v U(un—l/Q’pn—l/Q) _ fn—1/2
Define the tentative velocity «* using the approximation
thlL* + punfl B V2Tt S v A O_(unfl/27pn73/2) _ fn71/2 (1)
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A splitting scheme for Navier-Stokes (Part 2/3)

Subtract the equation for the tentative velocity from the
equation for the corrected velocity u™:

p(D™ — D*) — V- o (0,p" Y2 — p 32y = 0

Definition of D; gives:

*)

n __ ,n—1 * ., n—1
p(Dtun —Dtu*) =) <U u u u > P

kn ke —
Definition of o(u,p) = 2ue(u) — pI gives:
—V o (0,p" 2 ) = v (pn TR - AT
= V("2 -2
Multiplying by k,, and keeping only u™ on the left hand side give
pu' = pu* =k, V (p 2 — pn i) (2)
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A splitting scheme for Navier-Stokes (Part 3/3)
Recall (1):
pu = pu* — k. V (p 2 — pn32)
Assuming u* and p"~3/2 given, need p" /2!
Taking the divergence of (1) gives
pV - -u" =V (pu* - an(p”_l/2 - p"_3/2))

We want V - u™ =0, i.e

0=V- (pu* — an(p"_1/2 —p”_3/2))
or equivalently (denoting Ap =V - Vp):

—kn APV = ke AP — pV ¥ (3)
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A splitting scheme for Navier-Stokes (Summary)

For each n, given u"~1 and p"—3/2,
e Step 1: Compute the tentative velocity u* from
pDu* + pu VU -V U(u”_1/2,pn_3/2) = f"_l/2
e Step 2: Compute the pressure p"~1/2 from
—kn APV = ke, Apn3/2 — pV - u*¥

e Step 3: Compute the corrected velocity u" from

pun _ pu* _ knv(pn—1/2 _pn—3/2)
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Boundary conditions

We consider boundary conditions of the type

u=gp onI'y x (0,7
o-n=t,=-pn onl x(0,T]

e Velocity boundary conditions (v = gp on I'p) are enforced
strongly in the finite element spaces, i.e as Dirichlet
boundary conditions.

e Traction boundary conditions (o - n =t ) are enforced
weakly in the variational formulation.

In the splitting scheme, auxilliary boundary conditions are
required for the pressure Poisson problem:

p=p only
Onp = on I',

and an auxiliary initial condition for the pressure p~ Y2 = py.
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Enforcing traction boundary conditions in
splitting scheme
Note that
U(Un—1/2’pn—3/2) _ 2'u€(un—1/2) _ pn—3/2l _ pn—l/QI +pn—1/21
_ O_(Un—l/27pn—l/2) +pn—1/2 _pn—3/2
If we want to enforce
O'(Un_l/2,pn_1/2) ‘n=—pn

and

pn—1/2 ‘n=pn

Then, we should say

U(un—l/Q’pn—3/2) on = _pn—3/2n
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Weak formulation of N-S splitting scheme

Forn=1,2,...,N, given v” and p~ V2

©® Compute u* with u*]pD = g, solving
(pDju* v) + (pu™ - Vu ) + (o (u" 2, p" ) e (v)
= <fn_1/27 U) - <pn—3/2n’ U>8Q

for all v such that v[r_ = 0.
® Compute p" /2 with p”*1/2\FN =p

kn (VP12 Vq) = kn (V"% V) — (pV - u*¥, q)

for all ¢ such that q|pN =0

® Compute u" solving
(pu, v) = (pu*,v) — ki (V(p" /2 = p"73/%), )

for all v.
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Useful FEniCS tools (I)

Note grad vs. V:

dot (grad(u), u)
dot (u, nabla_grad(u))

Defining operators:

def sigma(u, p):
return 2.0*mu*sym(grad(u))-p*Identity (len(u))

The facet normal n:

[
‘n = FacetNormal (mesh)
L
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Useful FEniCS tools (II)

Assembling matrices and vectors:

A = assemble(a)
b assemble (L)

Solving linear systems:

solve (A, x, b)
solve(A, x, b, "gmres", "ilu")
solve(A, x, b, "cg", "amg")

Extracting left- and right-hand sides:

F = <complicated expression>
a = 1lhs(F)
L = rhs(F)

15 /12



The FEniCS challenge!

Solve the incompressible Navier—Stokes equations for the flow of
water around a dolphin. The water is initially at rest and the
flow is driven by a pressure gradient.
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The FEniCS challenge!

e Use the mesh dolfin channel.xml.gz, and finite element
spaces Vi, = P35 and Q, = Py

e Compute the solution on the time interval [0,0.1] with time
steps of size k = 0.0005

e Set p =1 kPa at the inflow (left side) and p = 0 at the
outflow (right side)

e Set g, = (0,0) on the remaining boundary

e Set f=(0,0)

e The density of water is p = 1000 kg/m?® and the viscosity is
= 0.001002 kg/(m - s)

e To check your answer, compute the average velocity in the
z-direction:

amzmﬂ/gu-(l,o)dx

The student(s) who first produce the right answer will be

rewarded with an exclusive FEniCS surprise!
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