FEniCS Course

Lecture 16: Optimal control of the Navier-Stokes equations

Contributors Simon Funke

The FEniCS challenge!

Consider steady flow around a cylinder driven by a pressure difference at the left and right boundaries:

- Imagine you can place sponges in the top half (light green) area of the domain.
- How would you place the sponges in order to minimise dissipation of the flow into heat?

The FEniCS challenge!

Consider steady flow around a cylinder driven by a pressure difference at the left and right boundaries:

- Imagine you can place sponges in the top half (light green) area of the domain.
- How would you place the sponges in order to minimise dissipation of the flow into heat?

The FEniCS challenge!

$$
\min _{u, f} \int_{\Omega}\langle\nabla u, \nabla u\rangle \mathrm{d} x+\alpha \int_{\Omega}\langle f, f\rangle \mathrm{d} x
$$

subject to:

$$
\begin{array}{cl}
-\nu \Delta u+\nabla u \cdot u-\nabla p=-f u & \text { in } \Omega, \\
\operatorname{div}(u)=0 & \text { in } \Omega,
\end{array}
$$

with:

- u the velocity,
- p the pressure,
- f the control function.
- $\nu=1$ the viscosity,
- α the regularisation parameter,

The boundary conditions are:

- $p=1$ on the left,
- $p=0$ on the right,
- $u=(0,0)$ on the top and bottom and circle.

The FEniCS challenge!

Domain

(Or rather, put the circle with center $(10.0,5.0)$ and radius 2.5)
(1) Write a new program and generate a mesh with the above domain.

The FEniCS challenge!

Navier-Stokes solver

The variational formulation of the Navier-Stokes equations is: Find $u, p \in V \times Q$ such that:

$$
\begin{gathered}
\int_{\Omega} \nu \nabla u \cdot \nabla v+(\nabla u \cdot u+f u) \cdot v+p \operatorname{div} v \mathrm{~d} x=-\int_{\partial \Omega} p_{0} v \cdot n \mathrm{~d} s, \\
\int_{\Omega} \operatorname{div} u q \mathrm{~d} x=0
\end{gathered}
$$

for all $v \in V$ and all $q \in Q$.
(2) Create a MixedFunctionSpace consisting of continuous piecewise quadratic vector fields for the velocity and continuous piecewise linears for the pressure.
(3) Solve the Navier-Stokes equation for $f=0$ and the given boundary conditions.

The FEniCS challenge!

Optimise
(3) Import dolfin-adjoint and define the control parameter and functional.
(4) Minimise the functional and plot the optimal control.
(5) What is the minimised functional?

Note

Multiply the $\int_{\Omega} f u \cdot v \mathrm{~d} x$ term in the variational formulation with the indicator function:

```
x = SpatialCoordinate(mesh)
chi = conditional(x[1] >= 5, 1, 0)
```

to ensure that the control is only active in the top half of the domain.

