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What is PDE-constrained optimisation?

Optimisation problems where at least one constrained is a
partial differential equation

Applications

• Data assimilation.
Example: Weather modelling.

• Shape and topology optimisation.
Example: Optimal shape of an aerfoil.

• Parameter estimation.

• Optimal control.

• ...
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Hello World of PDE-constrained optimisation!

We will solve the optimal control of the Poisson equation:

min
u,m

1

2

∫
Ω
‖u− ud‖2 dx+

α

2

∫
Ω
‖m‖2 dx

subject to

−∆u = m in Ω

u = u0 on ∂Ω

• This problem can be physically interpreted as: Find the
heating/cooling term m for which u best approximates the
desired heat distribution ud.

• The second term in the objective functional, known as
Thikhonov regularisation, ensures existence and uniqueness
for α > 0.
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The canconical abstract form

min
u,m

J(u,m)

subject to:

F (u,m) = 0,

with

• the objective functional J .

• the parameter m.

• the PDE operator F with solution u, parametrised by m.
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The reduced problem

min
m

J̃(m) = J(u(m),m)

with

• the reduced functional J̃ .

• the parameter m.

How do we solve this problem?

• Gradient descent.

• Newton method.

• Quasi-Newton methods.
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Gradient descent

Algorithm

1 Choose initial parameter value m0 and γ > 0.

2 For i = 0, 1, . . . :
• mi+1 = mi − γ∇J(mi)

Features

+ Easy to implement.

– Slow convergence.
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Newton method
Optimisation problem: minm J̃(m).
Optimality condition:

∇J̃(m) = 0. (1)

Newton method applied to (1):

1 Choose initial parameter value m0.
2 For i = 0, 1, . . . :

• H(J)δm = −∇J(mi), where H denotes the Hessian.
• mi+1 = mi + δm

Features

+ Fast (locally quadratic) convergence.

– Requires iteratively solving a linear system with
the Hessian, which might require many Hessian
action computations.

– Hessian might not be positive definite, resulting in
an update δm which is not a descent direction.
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Quasi-Newton methods

Like Newton method, but use approximate, low-rank Hessian
approximation using gradient information only. A common
approximation method is BFGS.

Features

+ Robust: Hessian approximation is always positive
definite.

+ Cheap: No Hessian computation required, only
gradient computations.

– Only superlinear convergence rate.
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Solving the optimal Poisson problem

from fenics import *

from dolfin_adjoint import *

# Solve Poisson problem

# ...

J = Functional(inner(s, s)*dx)

m = SteadyParameter(f)

rf = ReducedFunctional(J, m)

m_opt = minimize(rf , method="L-BFGS -B", tol=1e-2)

Tipps

• You can call print optimization methods() to list all
available methods.

• Use maximize if you want to solve a maximisation
problem.
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Bound constraints

Sometimes it is usefull to specify lower and upper bounds for
parameters:

lb ≤ m ≤ ub. (2)

Example:

lb = interpolate(0, V)

ub = interpolate(Expression("x[0]", degree=1), V)

m_opt = minimize(rf , method="L-BFGS -B",

bounds=[lb , ub])

Note: Not all optimisation algorithms support bound
constraints.
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Inequality constraints

Sometimes it is usefull to specify (in-)equality constraints on
the parameters:

g(m) ≤ 0. (3)

You can do that by overloading the InequalityConstraint
class.
For more information visit the Example section on
dolfin-adjoint.org.
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The FEniCS challenge!

1 Solve the ”Hello world” PDE-constrained optimisation
problem on the unit square with ud(x, y) = sin(πx) sin(πy),
homogenous boundary conditions and α = 10−6.

2 Compute the difference between optimised heat profile and
ud before and after the optimisation.

3 Use the optimisation algorithms SLSQP, Newton-CG and
L-BFGS-B and compare them.

4 What happens if you increase α?

12 / 12


