FEniCS Course

Lecture 13: Introduction to dolfin-adjoint

Contributors
Simon Funke
Patrick Farrell
Marie E. Roenes

1/25



P. E. Farrell, S. W. Funke, D. A. Ham, M. E. Rognes
Snon0simula

The dolfin-adjoint project automatically derives and solves adjoint and tangent linear equations

from high-level mathematical specifications of finite element discretizations of partial differential equations.

ABOUT DOLFIN-ADJOINT

Adjoint aud tangent finear models form the basis of many numerical techniques- su:h as sensitivty analysis, pimzton. ar\d
of

stabilty a ver, the derivation an nlinear or
nu(oﬂous\y challenging: the manual o soprosch s tme-conuming and erarone o and tradtionsl automatic d\l?even\nanon
o0ls lack robustness and perf
domrradjoml oves the prole by automaticallyanazingth High vl mathemticalssucture herent i e lament
level

methods.
o that of whole systems of dffrential equations. T approach ehers & e of acantags over he rcious state
of-the-art; robust hands-off automation of adoint model derivation; computational efficiency approaching the theoretical
optimum; and native paralll support inherited from the forward model.

Symbolc forward oquatons.

‘Symbolcdorwvaton (dolfiv-adioint)

< Figure: By adding a few lines of code to an
existing FENCS model, dullmradjmn( mmvu!es
angart linear and adjoint solutions, gradients

Hessian actions of avmlrary o specd
nctons, andvies these s com-
bination with sophisticated optimization algo-
vithms or to conduct stabilty analyses

Code generatn (FENCS)

Godo generation (FENCS)

The implementation of doffin-adjoint is based on the finite-clement framework FENICS. When the user runs a FENICS
model, dolfin-adjoint records the dependencies and structure of the forward equations. The resulting execution graph
stores a mathematical representation of the forward equations. By reasoning about this graph, dolfin-adjoint can linearize
the equations to derive a symbolic representation of the discrete tangent linear equations, and reverse the propagation of
information to derive the corresponding adjoint equations. By invoking the FENICS automatic code generator on these
equations, doffin-adjoint obtains solutions of the tangent finear and adjoint models, and can use these to compute consistent
first and second order functional derivatives. dolfin-adjoint also has preliminary support for the Firedrake project.

dolfin-adjoint runs naturally in parallel, and inherts the scalabilty and code optimizations of FENICS. To verify this, we
benchmarked the sensitiity analysis and generalized stabilty application examples.

Generalized stabilty example
Optmal PUs 1

e (s) 403 196 132 Forward runtime () 524 55

ot o () 591 195 125 ot rotime () 414 25

‘Adioint/Forward ratio 097 099 095 100 Adjoint/Forward ratio 0.45 047_ 0

Sensitvity analysis example

2 O

Tables: The sensitivity analysis example is inear, whil the generalized stabiity analysis example is nonlinear and converges
on average in 2 Newton-iteration per timestep. Hence the adjoint model s expected to be twice as fast as the forward
model.

‘The adioint equations depend on the forward solutions. However, stor-
ing the entie forward trajectory i infeasble for large, time-dependent
simulations. In this case, dolfin-adjoint can employ a binormial check-
pointing strategy via the revolve library. When actwated, dolfin-adjoint
ammamuy saves state checkpoints and uses them to recompute

rward states to trade off memory requirements and compu-
Ttons effcn. This allows for so\vmq ) i squatonsevn o g

For instar

Figure: Visualisation of the optimal checkpoint-

107 time-steps at a cost of a 3>< slwdwm

el e g

APPLICATION EXAMPLES

Consider the time dependent heat equation
in 2x0.7),
u=g frQx (0}

U oy
i vVu=0

final time, u is the unknown temperature,

inital temperature.

) ue=Ty

with respect to the inital temperature, that is 1/ g

Iniial temperature Final temperature.

Here Qs the Gray's Klein bottl, a closed 2D manifold embedded in 30, T is the
v is the thermal diffusiity, and g is the

‘The goal is to compute the sensitivty of the norm of temperature at the final time.

206

Sensitivty

Trom dolfin import +
from dolfin_adjoint import +

# Solve the forvard system
F = urvede - u_oldsvedx +
dtnusinner (grad(v) , grad(u)) sax

# Apply dolfin-adjoint
m = Control(g)

1)
am compute_gradient (J, m)
- hessian(J, m)

A
Code: Implementation excerpt (the code incud-
ing th complete forward model has 37 fines)

“This topology optimization example minimizes the complance
fT+a / Va-Va,
o o

subject to the Poisson equation with mixed Dirichlet-Neumann con-
ditions

»dw(k(a)VT) = f inQ,
on o0,
k(a)VT o on a0y,
and aditional control constraints
a<Vad0<a) <1 ¥xeQ

Here Q is the unit square, T is the temperature, i the control
(alx) = 1 means material, a(x) ns no material), f is a
e, ()50 sma Yiemee R Rz
parameterization, s the volume
e Phys\cal\y e Wob\em is to find the material
distribution a that minimizes the integral of the temperature for
limited amount of conducting o

Fron dolfin import +
fron dolfin_adjoint import +

¥
a

ze=
mininize(rf, mef

£+Teax + alpharinner (grad(a) ,grad(a)) +ax
Control(a)

ducedFunctional (J, m)

thod="SLSQP", bounds=...)

s
Code: Implementation excerpt
(the ful code uses the IPOPT.
optimization package and has 56
lnes)

< Figure: Optiml material dis-
tribution a for a unit square do-
main and £ — 102

T find
inital condition that grow the most over some fiite time. The governing equations

salinity:

Navier-Stokes equations, coupled to two advection equations for temperature and




Adjoints are key ingredients for sensitivity
analysis, PDE-constrained optimization, ...

So far we have focused on solving forward PDEs.
But we want to do (and can do) more than that!

Maybe we are interested in ...

e the sensitivity with respect to certain parameters
e initial conditions,
e forcing terms,
e unknown coefficients.

e PDE-constrained optimization
e data assimilation
e optimal control

e goal-oriented error control

For this we want to compute functional derivatives and adjoints
provide an efficient way of doing so.

3/25



What is the sensitivity of the abnormal wave

propagation to the local tissue conductivities?
The wave propagation abnormality at a given time T":

(0, 5,1) = [o(T) — v, -2 =2
9Gelis

v_d = Function(V, "healthy_obs_200.xml.gz")
J = Functional (inner (v - v_d, v - v_d)*dx*dt[T])
dJdg_s = compute_gradient (J, gs)

4/25



The Hello World of functional derivatives

Consider the Poisson’s equation

—vAu=m in Q,
u=0 on 0f),

together with the objective functional

1
I =5 [ = ualP de,

where ug4 is a known function.

Goal

Compute the sensitivity of J with respect to the parameter m:
dJ/dm.



Computing functional derivatives (Part 1/3)

Given

e Parameter m,
e PDE F(u,m) = 0 with solution u.
e Objective functional J(u,m) — R,

6 /25



Computing functional derivatives (Part 1/3)

Given

e Parameter m,
e PDE F(u,m) = 0 with solution u.
e Objective functional J(u,m) — R,

Goal
Compute d.J/dm.

6 /25



Computing functional derivatives (Part 1/3)

Given

e Parameter m,
e PDE F(u,m) = 0 with solution u.
e Objective functional J(u,m) — R,

Goal
Compute d.J/dm.

Reduced functional
Consider u as an implicit function of m by solving the PDE.
With that we define the reduced functional R:

6 /25



Computing functional derivatives (Part 2/3)

Reduced functional:

R(m) = J(u(m), m).

7 /25



Computing functional derivatives (Part 2/3)

Reduced functional:

Taking the derivative of with respect to m yields:

AR _as_osdu o7
dm dm  dudm  Om’

7 /25



Computing functional derivatives (Part 2/3)

Reduced functional:
R(m) = J(u(m), m).
Taking the derivative of with respect to m yields:

AR _as _osau o
dm dm  dudm  Om’

Computing 3 97 and 8‘] is straight-forward, but how handle d“ !

7 /25



Computing functional derivatives (Part 3/3)
Taking the derivative of F'(u,m) = 0 with respect to m yields:

dF _OF du  9F _

am = dudm Tam "

8/25



Computing functional derivatives (Part 3/3)
Taking the derivative of F'(u,m) = 0 with respect to m yields:

dF _OF du  9F _

am = dudm Tam "

Hence:

dm ) om

du <6F>_1 oOF

8/25



Computing functional derivatives (Part 3/3)

Taking the derivative of F'(u,m) = 0 with respect to m yields:

dF _OF du  9F _

am = dudm Tam "

Hence:

du <6F>_1 oF

dm ~ \ou) om

Final formula for functional derivative

adjoint PDE

—_—
47 _ 97 (OF\T'OF 0]
dm  Ou \ Ou om  Om’

—_——
tangent linear PDE

8/25



Dimensions of a finite dimensional example

discretised adjoint PDE

oJ

dm

discretised tangent linear PDE

The tangent linear solution is a matrix of dimension |u| x |m)|
and requires the solution of m linear systems.

The adjoint solution is a vector of dimension |u| and requires
the solution of one linear system.

9/25



Adjoint approach

@ Solve the adjoint equation for A

[ *
8>\_8J

ou " Ou

® Compute

W 0F o)
dm 7 om  Om’

The computational expensive part is (1). It requires solving the
(linear) adjoint PDE, and its cost is independent of the choice
of parameter m.

10/ 25



What is dolfin-adjoint?

Dolfin-adjoint is an extension of FEniCS for: solving adjoint
and tangent linear equations; generalised stability analysis;
PDE-constrained optimisation.

Main features
e Automated derivation of first and second order adjoint and
tangent linear models.
e Discretely consistent derivatives.

e Parallel support and near theoretically optimal
performance.

e Interface to optimisation algorithms for PDE-constrained
optimisation.

e Documentation and examples on
www.dolfin-adjoint.org.

11/25


www.dolfin-adjoint.org

What has dolfin-adjoint been used for?

Layout optimisation of tidal turbines

e Up to 400 tidal turbines in one farm.

e What are the optimal locations to maximise power
production?

12 /25



What has dolfin-adjoint been used for?

Layout optimisation of tidal turbines

6000 20 40 60 80 100 120 140

Optimisation iteration

13 /25



What has dolfin-adjoint been used for?

Layout optimisation of tidal turbines

from dolfin import *
from dolfin_adjoint import =*

# FEniCS model

#

J = Functional (turbines*inner (u, u)*#*(3/2)*dx*dt)
m = Control(turbine_positions)

R = ReducedFunctional (J, m)

maximize (R)

14 /25



What has dolfin-adjoint been used for?

Reconstruction of a tsunami wave

Is it possible to reconstruct a tsunami wave from images like
this?

Tmage: ASTER/NASA PIA06671



What has dolfin-adjoint been used for?

Reconstruction of a tsunami wave

mp [m]
np [m]

N
G

10 15 20 5 10 15
Time [h] Time [h]
Correct tsunami wave Reconstructed tsunami wave

1072 T T T T T

0 5 10 15 20 25 30 35 40 45
Iteration

16 /25



Reconstruction of a tsunami wave

from fenics import *
from dolfin_adjoint import =*

# FEniCS model

#

J = Functional (observation_error#**2*dx*dt)
m = Control (input_wave)

R = ReducedFunctional (J, m)

minimize (R)

17 /25



Other applications

Dolfin-adjoint has been applied to lots of other cases, and
works for many PDEs:

Some PDEs we have adjoined

e Burgers e Blatter-Pattyn

e Navier-Stokes e Quasi-geostrophic

e Stokes 4+ mantle rheology e Viscoelasticity

e Stokes + ice rheology o Gross-Pitaevskii

e Saint Venant + e Yamabe
wetting/drying e Image registration

e Cahn-Hilliard e Bidomain

o Gray-Scott o .

e Shallow ice

18 /25



Consider again our first example

Compute the sensitivity 9.J/0m of

J(u) _/ - ugll? de
Q
with known ug and the Poisson equation:

—vAu=m 1in
u=0 on Jf.

with respect to m.

19 /25



Poisson solver in FEniCS

An implementation of the Poisson’s equation might look like this:

from fenics import *

# Define mesh and finite element space
mesh = UnitSquareMesh (50, 50)

V = FunctionSpace(mesh, "Lagrange", 1)
# Define basis functions and parameters
u = TrialFunction (V)

v = TestFunction (V)

m = interpolate(Constant(1.0), V)

nu = Comnstant (1.0)

# Define variational problem

a = nu*inner (grad(u), grad(v))=*dx

L = m*v*dx

bc = DirichletBC(V, 0.0, "on_boundary")

# Solve variational problem
u = Function(V)

solve(a == L, u, bc)
plot(u, title="u")

20/ 25



Dolfin-adjoint records all relevant steps of your
FEniCS code

The first change necessary to adjoin this code is to import the
dolfin-adjoint module after importing DOLFIN:

from fenics import x*
from dolfin_adjoint import =*

With this, dolfin-adjoint will record each step of the model,
building an annotation. The annotation is used to symbolically
manipulate the recorded equations to derive the tangent linear
and adjoint models.

In this particular example, the solve function method will be
recorded.

21 /25



Dolfin-adjoint extends the FEniCS syntax for
defining objective functionals

Next, we implement the objective functional, the square
L?-norm of u — ug:

J(w) :/ = ugll? do
Q

or in code

inner(u - u_d, u - u_d)*dx
J = Functional(j)

.
]

22 /25



Specify which parameter you want to
differentiate with respect to using Controls

Next we need to decide which parameter we are interested in.
Here, we would like to investigate the sensitivity with respect to
the source term m.

We inform dolfin-adjoint of this:

[
‘mc = Control (m)
L

23 /25



One line of code for efficiently computing
gradients

Now, we can compute the gradient with:

‘dem = compute_gradient (J, mc, project=True)
L |

Dolfin-adjoint derives and solves the adjoint equations for us
and returns the gradient.

24 /25



One line of code for efficiently computing
gradients

Now, we can compute the gradient with:

[ |
‘ dJdm = compute_gradient(J, mc, project=True) ‘
L |

Dolfin-adjoint derives and solves the adjoint equations for us
and returns the gradient.

Note

If you call compute_gradient more than once, you need to
pass forget=Fualse as a parameter. Otherwise you get an error:
Need a value for u_1:0:0:Forward, but don’t have one recorded.

24 /25



One line of code for efficiently computing
gradients

Now, we can compute the gradient with:

[ |
‘ dJdm = compute_gradient(J, mc, project=True) ‘
L |

Dolfin-adjoint derives and solves the adjoint equations for us
and returns the gradient.

Note

If you call compute_gradient more than once, you need to
pass forget=Fualse as a parameter. Otherwise you get an error:
Need a value for u_1:0:0:Forward, but don’t have one recorded.

Computational cost

Computing the gradient requires one adjoint solve.

24 /25



One line of code for efficiently computing
Hessians

Dolfin-adjoint can also compute the second derivatives
(Hessians):

H = hessian(J, mc)
direction = interpolate(Constant (1), V)
plot (H(direction))




One line of code for efficiently computing
Hessians

Dolfin-adjoint can also compute the second derivatives
(Hessians):

H = hessian(J, mc)
direction = interpolate(Constant (1), V)
plot (H(direction))

Computational cost

Computing the directional second derivative requires one
tangent linear and two adjoint solves.



Verification: How can you check that the
gradient is correct?

Taylor expansion of the reduced functional R in a perturbation
om yields:
|R(m + edm) — R(m)| — 0 at O(e)
but
|R(m + edm) — R(m) — eVR-dm| =0 at O(e?)

Taylor test

Choose m, dm and determine the convergence rate by reducing
e. If the convergence order with gradient is ~ 2, your gradient is
probably correct.

R = ReducedFunctional (J, mc)
R.taylor_test (m)

26 /25



Dolfin-adjoint Exercise 1

@ Install Dolfin-adjoint

® Compute the gradient and Hessian of the Poisson example
with respect to m.

® Run the Taylor test to check that the gradient is correct.

@ Measure the computation time for the forward, gradient

and Hessian computation. What do you observe? Hint:

Use help(Timer).

Notebook tip

Dolfin-adjoint and Notebooks are somewhat orthogonal. If

mysterious messages appear, try 'Kernel - Restart & Run All’

27 /25



