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dolfin–adjoint
automatic adjoint models for FEniCS

P. E. Farrell, S. W. Funke, D. A. Ham, M. E. Rognes
Simon@simula.no

The dolfin-adjoint project automatically derives and solves adjoint and tangent linear equations
from high-level mathematical specifications of finite element discretizations of partial differential equations.

About dolfin-adjoint

Adjoint and tangent linear models form the basis of many numerical techniques such as sensitivity analysis, optimization, and

stability analysis. However, the derivation and implementation of adjoint models for nonlinear or time-dependent models are

notoriously challenging: the manual approach is time-consuming and error-prone and traditional automatic differentiation

tools lack robustness and performance.

dolfin-adjoint solves this problem by automatically analyzing the high-level mathematical structure inherent in finite element

methods. It raises the traditional abstraction of algorithmic differentiation from the level of individual floating point operations

to that of whole systems of differential equations. This approach delivers a number of advantages over the previous state-

of-the-art: robust hands-off automation of adjoint model derivation; computational efficiency approaching the theoretical

optimum; and native parallel support inherited from the forward model.

Symbolic forward equations

Symbolic adjoint equations

Symbolic derivation (dolfin-adjoint)

Adjoint code

Forward code
Code generation (FEniCS)

Code generation (FEniCS)

/ Figure: By adding a few lines of code to an

existing FEniCS model, dolfin-adjoint computes

tangent linear and adjoint solutions, gradients

and Hessian actions of arbitrary user-specified

functionals, and uses these derivatives in com-

bination with sophisticated optimization algo-

rithms or to conduct stability analyses

The implementation of dolfin-adjoint is based on the finite-element framework FEniCS. When the user runs a FEniCS

model, dolfin-adjoint records the dependencies and structure of the forward equations. The resulting execution graph

stores a mathematical representation of the forward equations. By reasoning about this graph, dolfin-adjoint can linearize

the equations to derive a symbolic representation of the discrete tangent linear equations, and reverse the propagation of

information to derive the corresponding adjoint equations. By invoking the FEniCS automatic code generator on these

equations, dolfin-adjoint obtains solutions of the tangent linear and adjoint models, and can use these to compute consistent

first and second order functional derivatives. dolfin-adjoint also has preliminary support for the Firedrake project.

How it works
Application examples

Consider the time dependent heat equation

∂u

∂t
− ν∇2u = 0 in Ω× (0, T ),

u = g for Ω× {0}.
Here Ω is the Gray’s Klein bottle, a closed 2D manifold embedded in 3D, T is the

final time, u is the unknown temperature, ν is the thermal diffusivity, and g is the

initial temperature.

The goal is to compute the sensitivity of the norm of temperature at the final time

J(u) =

∫

Ω

u(t = T )2

with respect to the initial temperature, that is dJ/dg.

Initial temperature Final temperature Sensitivity

from dolfin import *

from dolfin˙adjoint import *

# Solve the forward system

F = u*v*dx - u˙old*v*dx +

dt*nu*inner(grad(v),grad(u))*dx

while t ¡= T:

t += dt

solve(F == 0, u)

# Apply dolfin-adjoint

m = Control(g)

J = u**2*dx*dt[T]

dJdm = compute˙gradient(J, m)

H = hessian(J, m)

M
Code: Implementation excerpt (the code includ-

ing the complete forward model has 37 lines)

Sensitivity analysis

This topology optimization example minimizes the compliance∫

Ω

f T + α

∫

Ω

∇a · ∇a,

subject to the Poisson equation with mixed Dirichlet–Neumann con-

ditions

−div(k(a)∇T ) = f in Ω,

T = 0 on ∂ΩD,

k(a)∇T = 0 on ∂ΩN,

and additional control constraints∫

Ω

a ≤ V and 0 ≤ a(x) ≤ 1 ∀x ∈ Ω.

Here Ω is the unit square, T is the temperature, a is the control

(a(x) = 1 means material, a(x) = 0 means no material), f is a

source term, k(a) is the Solid Isotropic Material with Penalisation

parameterization, α is a regularization term, and V is the volume

bound on the control. Physically, the problem is to find the material

distribution a that minimizes the integral of the temperature for a

limited amount of conducting material.

from dolfin import *

from dolfin˙adjoint import *

# ...

J = f*T*dx + alpha*inner(grad(a),grad(a))*dx

m = Control(a)

rf = ReducedFunctional(J, m)

minimize(rf, method=”SLSQP”, bounds=...)

M
Code: Implementation excerpt

(the full code uses the IPOPT

optimization package and has 56

lines)

/ Figure: Optimal material dis-

tribution a for a unit square do-

main and f = 10−2

PDE-constrained optimization

This example performs a generalized stability analysis to find the perturbations to an

initial condition that grow the most over some finite time. The governing equations

are the two-dimensional vorticity-streamfunction formulation of the time-dependent

Navier–Stokes equations, coupled to two advection equations for temperature and

salinity:

∂ζ

∂t
+∇⊥ψ · ∇ζ =

Ra

Pr

(
∂T

∂x
− 1

R0
ρ

∂S

∂x

)
+∇2ζ,

∂T

∂t
+∇⊥ψ · ∇T =

1

Pr
∇2T,

∂S

∂t
+∇⊥ψ · ∇S =

1

Sc
∇2S,

∇2ψ = ζ.

ζ is the vorticity, ψ is the streamfunction, T is the temperature, S is the salinity, and

Ra, Sc, Pr and R0
ρ are parameters. The configuration consists of two well-mixed

layers (i.e., of homogeneous temperature and salinity) separated by an interface.

The instability is activated by a sinusoidal perturbation to the initial salinity field.

from dolfin import *

from dolfin˙adjoint import *

# ...

gst = compute˙gst(”InitialSalinity”, ”FinalSalinity”, nsv=2)

Initial salinity
Leading initial salinity

perturbation

/ Code: Implementa-

tion excerpt (the full

code uses SLEPc and

has 144 lines)

Leading final salinity

perturbation

Generalized stability analysis

dolfin-adjoint runs naturally in parallel, and inherits the scalability and code optimizations of FEniCS. To verify this, we

benchmarked the sensitivity analysis and generalized stability application examples.

Sensitivity analysis example

CPUs 1 2 4 Optimal

Forward runtime (s) 40.3 19.6 13.2

Adjoint runtime (s) 39.1 19.3 12.5

Adjoint/Forward ratio 0.97 0.99 0.95 1.00

Generalized stability example

CPUs 1 2 Optimal

Forward runtime (s) 92.4 55.0

Adjoint runtime (s) 41.4 25.9

Adjoint/Forward ratio 0.45 0.47 0.5

Tables: The sensitivity analysis example is linear, while the generalized stability analysis example is nonlinear and converges

on average in 2 Newton-iteration per timestep. Hence the adjoint model is expected to be twice as fast as the forward

model.

Performance

The adjoint equations depend on the forward solutions. However, stor-

ing the entire forward trajectory is infeasible for large, time-dependent

simulations. In this case, dolfin-adjoint can employ a binomial check-

pointing strategy via the revolve library. When activated, dolfin-adjoint

automatically saves state checkpoints and uses them to recompute

missing forward states to trade off memory requirements and compu-

tational effort. This allows for solving adjoint equations even for large-

scale simulations. For instance, 390 checkpoints allow simulations with

107 time-steps at a cost of a 3× slow-down.

1 2 3 4 5 6 7 8 9 10

Figure: Visualisation of the optimal checkpoint-

ing strategy with 10 time levels and 3 checkpoints

To benchmark the checkpoint implementation, we used the sensitivity example to compare the additional computational

cost of checkpointing with a store-all strategy in dolfin-adjoint:

Slow-down factor with 11 timesteps and varying memory checkpoints

Theoretical adjoint to forward runtime ratio 5.00 2.18 1.63 1.45 1.00

Observed adjoint to forward runtime ratio 5.07 2.26 1.73 1.53 0.90

Checkpointing

How to get started

http://dolfin-adjoint.org
Contains an introduction to adjoints, documentation, tutorials and instal-

lation instructions for Linux (with Ubuntu packages) and MacOS X.

Downloads
This poster

PDF format

References

dolfin-adjoint.org/citing

Source code

bitbucket.org/dolfin-adjoint
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Adjoints are key ingredients for sensitivity
analysis, PDE-constrained optimization, ...

So far we have focused on solving forward PDEs.

But we want to do (and can do) more than that!

Maybe we are interested in ...
• the sensitivity with respect to certain parameters

• initial conditions,
• forcing terms,
• unknown coefficients.

• PDE-constrained optimization
• data assimilation
• optimal control

• goal-oriented error control

For this we want to compute functional derivatives and adjoints
provide an efficient way of doing so.
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What is the sensitivity of the abnormal wave
propagation to the local tissue conductivities?

The wave propagation abnormality at a given time T :

J(v, s, u) = ‖v(T )− vobs(T )‖2, ∂J

∂ge|i|l|t
= ?

v_d = Function(V, "healthy_obs_200.xml.gz")

J = Functional(inner(v - v_d , v - v_d)*dx*dt[T])

dJdg_s = compute_gradient(J, gs)
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The Hello World of functional derivatives

Consider the Poisson’s equation

−ν∆u = m in Ω,

u = 0 on ∂Ω,

together with the objective functional

J(u) =
1

2

∫

Ω
‖u− ud‖2 dx,

where ud is a known function.

Goal
Compute the sensitivity of J with respect to the parameter m:
dJ/dm.
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Computing functional derivatives (Part 1/3)

Given

• Parameter m,

• PDE F (u,m) = 0 with solution u.

• Objective functional J(u,m)→ R,

Goal
Compute dJ/dm.

Reduced functional
Consider u as an implicit function of m by solving the PDE.
With that we define the reduced functional R:

R(m) = J(u(m),m)
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Computing functional derivatives (Part 2/3)

Reduced functional:

R(m) ≡ J(u(m),m).

Taking the derivative of with respect to m yields:

dR

dm
=

dJ

dm
=
∂J

∂u

du

dm
+
∂J

∂m
.

Computing ∂J
∂u and ∂J

∂m is straight-forward, but how handle du
dm?
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Computing functional derivatives (Part 3/3)

Taking the derivative of F (u,m) = 0 with respect to m yields:

dF

dm
=
∂F

∂u

du

dm
+
∂F

∂m
= 0

Hence:

du

dm
= −

(
∂F

∂u

)−1 ∂F

∂m

Final formula for functional derivative

dJ

dm
= −

adjoint PDE︷ ︸︸ ︷
∂J

∂u

(
∂F

∂u

)−1 ∂F

∂m︸ ︷︷ ︸
tangent linear PDE

+
∂J

∂m
,
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Dimensions of a finite dimensional example

dJ

dm
=

discretised adjoint PDE︷ ︸︸ ︷

−∂J
∂u ×

(
∂F
∂u

)−1 × ∂F
∂m

︸ ︷︷ ︸
discretised tangent linear PDE

+ ∂J
∂m

The tangent linear solution is a matrix of dimension |u| × |m|
and requires the solution of m linear systems.

The adjoint solution is a vector of dimension |u| and requires
the solution of one linear system.
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Adjoint approach

1 Solve the adjoint equation for λ

∂F

∂u

∗
λ = −∂J

∗

∂u
.

2 Compute
dJ

dm
= λ∗

∂F

∂m
+
∂J

∂m
.

The computational expensive part is (1). It requires solving the
(linear) adjoint PDE, and its cost is independent of the choice
of parameter m.
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What is dolfin-adjoint?

Dolfin-adjoint is an extension of FEniCS for: solving adjoint
and tangent linear equations; generalised stability analysis;
PDE-constrained optimisation.

Main features

• Automated derivation of first and second order adjoint and
tangent linear models.

• Discretely consistent derivatives.

• Parallel support and near theoretically optimal
performance.

• Interface to optimisation algorithms for PDE-constrained
optimisation.

• Documentation and examples on
www.dolfin-adjoint.org.
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What has dolfin-adjoint been used for?
Layout optimisation of tidal turbines

• Up to 400 tidal turbines in one farm.

• What are the optimal locations to maximise power
production?
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What has dolfin-adjoint been used for?
Layout optimisation of tidal turbines
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What has dolfin-adjoint been used for?
Layout optimisation of tidal turbines

from dolfin import *

from dolfin_adjoint import *

# FEniCS model

# ...

J = Functional(turbines*inner(u, u)**(3/2)*dx*dt)

m = Control(turbine_positions)

R = ReducedFunctional(J, m)

maximize(R)
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What has dolfin-adjoint been used for?
Reconstruction of a tsunami wave

1

Is it possible to reconstruct a tsunami wave from images like
this?

1Image: ASTER/NASA PIA06671
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What has dolfin-adjoint been used for?
Reconstruction of a tsunami wave
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Reconstruction of a tsunami wave

from fenics import *

from dolfin_adjoint import *

# FEniCS model

# ...

J = Functional(observation_error**2*dx*dt)

m = Control(input_wave)

R = ReducedFunctional(J, m)

minimize(R)
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Other applications

Dolfin-adjoint has been applied to lots of other cases, and
works for many PDEs:

Some PDEs we have adjoined

• Burgers

• Navier-Stokes

• Stokes + mantle rheology

• Stokes + ice rheology

• Saint Venant +
wetting/drying

• Cahn-Hilliard

• Gray-Scott

• Shallow ice

• Blatter-Pattyn

• Quasi-geostrophic

• Viscoelasticity

• Gross-Pitaevskii

• Yamabe

• Image registration

• Bidomain

• . . .
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Consider again our first example

Compute the sensitivity ∂J/∂m of

J(u) =

∫

Ω
‖u− ud‖2 dx

with known ud and the Poisson equation:

−ν∆u = m in Ω

u = 0 on ∂Ω.

with respect to m.
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Poisson solver in FEniCS
An implementation of the Poisson’s equation might look like this:

from fenics import *

# Define mesh and finite element space

mesh = UnitSquareMesh(50, 50)

V = FunctionSpace(mesh , "Lagrange", 1)

# Define basis functions and parameters

u = TrialFunction(V)

v = TestFunction(V)

m = interpolate(Constant(1.0), V)

nu = Constant(1.0)

# Define variational problem

a = nu*inner(grad(u), grad(v))*dx

L = m*v*dx

bc = DirichletBC(V, 0.0, "on_boundary")

# Solve variational problem

u = Function(V)

solve(a == L, u, bc)

plot(u, title="u")

20 / 25



Dolfin-adjoint records all relevant steps of your
FEniCS code

The first change necessary to adjoin this code is to import the
dolfin-adjoint module after importing DOLFIN:

from fenics import *

from dolfin_adjoint import *

With this, dolfin-adjoint will record each step of the model,
building an annotation. The annotation is used to symbolically
manipulate the recorded equations to derive the tangent linear
and adjoint models.

In this particular example, the solve function method will be
recorded.
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Dolfin-adjoint extends the FEniCS syntax for
defining objective functionals

Next, we implement the objective functional, the square
L2-norm of u− ud:

J(u) =

∫

Ω
‖u− ud‖2 dx

or in code

j = inner(u - u_d , u - u_d)*dx

J = Functional(j)
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Specify which parameter you want to
differentiate with respect to using Controls

Next we need to decide which parameter we are interested in.
Here, we would like to investigate the sensitivity with respect to
the source term m.

We inform dolfin-adjoint of this:

mc = Control(m)
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One line of code for efficiently computing
gradients

Now, we can compute the gradient with:

dJdm = compute_gradient(J, mc, project=True)

Dolfin-adjoint derives and solves the adjoint equations for us
and returns the gradient.

Note
If you call compute gradient more than once, you need to
pass forget=False as a parameter. Otherwise you get an error:
Need a value for u 1:0:0:Forward, but don’t have one recorded.

Computational cost

Computing the gradient requires one adjoint solve.
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One line of code for efficiently computing
Hessians

Dolfin-adjoint can also compute the second derivatives
(Hessians):

H = hessian(J, mc)

direction = interpolate(Constant(1), V)

plot(H(direction))

Computational cost

Computing the directional second derivative requires one
tangent linear and two adjoint solves.
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Verification: How can you check that the
gradient is correct?

Taylor expansion of the reduced functional R in a perturbation
δm yields:

|R(m+ εδm)−R(m)| → 0 at O(ε)

but

|R(m+ εδm)−R(m)− ε∇R · δm| → 0 at O(ε2)

Taylor test

Choose m, δm and determine the convergence rate by reducing
ε. If the convergence order with gradient is ≈ 2, your gradient is
probably correct.

R = ReducedFunctional(J, mc)

R.taylor_test(m)
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Dolfin-adjoint Exercise 1

1 Install Dolfin-adjoint

2 Compute the gradient and Hessian of the Poisson example

with respect to m.

3 Run the Taylor test to check that the gradient is correct.

4 Measure the computation time for the forward, gradient

and Hessian computation. What do you observe? Hint:

Use help(Timer).

Notebook tip

Dolfin-adjoint and Notebooks are somewhat orthogonal. If

mysterious messages appear, try ’Kernel - Restart & Run All’
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