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Adjoints are key ingredients for sensitivity
analysis, PDE-constrained optimization, ...

So far we have focused on solving forward PDEs.

But we want to do (and can do) more than that!

Maybe we are interested in ...
• the sensitivity with respect to certain parameters

• initial conditions,
• forcing terms,
• unknown coefficients.

• PDE-constrained optimization
• data assimilation
• optimal control

• goal-oriented error control

For this we want to compute functional derivatives and adjoints
provide an efficient way of doing so.
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What is the sensitivity of the abnormal wave
propagation to the local tissue conductivities?

The wave propagation abnormality at a given time T :

J(v, s, u) = ‖v(T )− vobs(T )‖2, ∂J

∂ge|i|l|t
= ?

v_d = Function(V, "healthy_obs_200.xml.gz")

J = Functional(inner(v - v_d , v - v_d)*dx*dt[T])

dJdg_s = compute_gradient(J, gs)
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The Hello World of functional derivatives

Consider the Poisson’s equation

−ν∆u = m in Ω,

u = 0 on ∂Ω,

together with the objective functional

J(u) =
1

2

∫
Ω
‖u− ud‖2 dx,

where ud is a known function.

Goal
Compute the sensitivity of J with respect to the parameter m:
dJ/dm.
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Computing functional derivatives (Part 1/3)

Given

• Parameter m,

• PDE F (u,m) = 0 with solution u.

• Objective functional J(u,m)→ R,

Goal
Compute dJ/dm.

Reduced functional
Consider u as an implicit function of m by solving the PDE.
With that we define the reduced functional R:

R(m) = J(u(m),m)
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Computing functional derivatives (Part 2/3)

Reduced functional:

R(m) ≡ J(u(m),m).

Taking the derivative of with respect to m yields:

dR

dm
=

dJ

dm
=
∂J

∂u

du

dm
+
∂J

∂m
.

Computing ∂J
∂u and ∂J

∂m is straight-forward, but how handle du
dm?
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Computing functional derivatives (Part 3/3)

Taking the derivative of F (u,m) = 0 with respect to m yields:

dF

dm
=
∂F

∂u

du

dm
+
∂F

∂m
= 0

Hence:

du

dm
= −

(
∂F

∂u

)−1 ∂F

∂m

Final formula for functional derivative

dJ

dm
= −

adjoint PDE︷ ︸︸ ︷
∂J

∂u

(
∂F

∂u

)−1 ∂F

∂m︸ ︷︷ ︸
tangent linear PDE

+
∂J

∂m
,
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Dimensions of a finite dimensional example

dJ

dm
=

discretised adjoint PDE︷ ︸︸ ︷
−∂J

∂u ×
(
∂F
∂u

)−1 × ∂F
∂m

︸ ︷︷ ︸
discretised tangent linear PDE

+ ∂J
∂m

The tangent linear solution is a matrix of dimension |u| × |m|
and requires the solution of m linear systems.

The adjoint solution is a vector of dimension |u| and requires
the solution of one linear system.
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Adjoint approach

1 Solve the adjoint equation for λ

∂F

∂u

∗
λ = −∂J

∗

∂u
.

2 Compute
dJ

dm
= λ∗

∂F

∂m
+
∂J

∂m
.

The computational expensive part is (1). It requires solving the
(linear) adjoint PDE, and its cost is independent of the choice
of parameter m.
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