
FEniCS Course
Lecture 9: Incompressible Navier–Stokes
equations

Contributors
Anders Logg
André Massing

1 / 11

The incompressible Navier–Stokes equations

u̇+ u · ∇u− ν∆u+∇p = f in Ω× (0, T]

∇ · u = 0 in Ω× (0, T]

u = gD on ΓD × (0, T]

ν
∂u

∂n
− pn = gN on ΓN × (0, T]

u(·, 0) = u0 in Ω

• u is the fluid velocity and p is the pressure divided by the
density ρ

• ν = µ/ρ is the kinematic viscosity, µ dynamic viscosity

• f is a given body force per unit mass

• gD is a given boundary velocity

• gN is a given boundary function for the natural boundary
condition

• u0 is a given initial velocity

2 / 11

Variational problem

Multiply the momentum equation by a test function v and
integrate by parts:∫

Ω
(u̇+ u · ∇u) · v dx+ ν

∫
Ω
∇u : ∇udx−

∫
Ω
p∇ · v dx

=

∫
Ω
f · v dx+

∫
Γ
N

gN · v ds

Short-hand notation:

(u̇+ u · ∇u, v) + ν(∇u,∇v)− (p,∇ · v) = (f, v) + (gN , v)Γ
N

Multiply the continuity equation by a test function q and sum
up: find (u, p) ∈ V such that

(u̇+ u · ∇u, v) + ν(∇u,∇v)− (p,∇ · v)− (q,∇ · u)

= (f, v) + (gN , v)Γ
N

for all (v, q) ∈ V̂
3 / 11

Discrete mixed variational form of Navier–Stokes

Time-discretization leads to a saddle-point problem on each
time step:[

M + ∆tA+ ∆tN(U) ∆tB
∆tB> 0

] [
U
P

]
=

[
b
0

]

• Efficient solution of the saddle-point problem relies on the

efficiency of special-purpose preconditioners (Uzawa

iteration, Schur complement preconditioners, . . .)

• We will use another approach (simpler and often more

efficient)

4 / 11

The classical Chorin-Teman projection method

Step 1: Compute tentative velocity uF solving

uF − un

∆t
− ν∆uF + (u∗ · ∇)u∗∗ = fn+1 in Ω

uF = gD on ΩD

∂uF

∂n
= 0 on ΩN

Step 2: Compute a corrected velocity un+1 and a new pressure
pn+1 solving

un+1 − uF

∆t
+∇pn+1 = 0 in Ω

∇ · un+1 = 0 in Ω

un+1 · n = 0 on ∂Ω

5 / 11

Computing the tentative velocity

In principle, the term (u∗ · ∇)u∗∗ can be approximated in

several ways

• Explicit: u∗ = u∗∗ = un ⇒ diffusion-reaction equation

• Semi-implicit u∗ = un and u∗∗ = un+1 ⇒

convection-diffusion-reaction equation

• Fully-implicit u∗ = u∗∗ = un+1 retaining the basic

non-linearity in the Navier-Stokes equations

The natural outflow condition ν∂nu− pn = 0 is artificially

enforced by requiring

• ∂nu
F = 0 on ∂ΩN in step 1

• pn+1 = 0 on ∂ΩN in step 2
6 / 11

Solving the projection step

Applying ∇· to
un+1 − uF

∆t
+∇pn+1 = 0 and using requirement

∇ · un+1 = 0 yields

∆pn+1 =
1

∆t
∇ · uF in Ω

We already required

p = 0 on ∂ΩN

Multiplying
un+1 − uF

∆t
+∇pn+1 = 0 with n and restricting to

∂ΩD gives
∂pn+1

∂n
= 0 on ∂ΩD

Compute un+1 by

un+1 = uF −∆t∇pn+1

including boundary conditions for u at t = tn+1

7 / 11

Chorin-Teman projection method – Summary

1 Compute tentative velocity uF by

(
uF − un

∆t
, v) + ((u∗ · ∇)u∗∗, v) + ν(∇uF,∇v)− (f, v) = 0

including boundary conditions for the velocity.

2 Compute new pressure pn+1 by

(∇pn+1,∇q) +
1

∆t
(∇ · uF, q) = 0

including boundary conditions for the pressure.

3 Compute corrected velocity by

(un+1 − uF, v) + ∆t(∇pn+1, v) = 0

including boundary conditions for the velocity.
8 / 11

Useful FEniCS tools (I)
Note grad vs. ∇:

dot(grad(u), u)

dot(u, nabla_grad(u))

Solving linear systems:

solve(A, x, b)

solve(A, x, b, "gmres", "ilu")

solve(A, x, b, "cg", "amg")

Defining a and L based on residual formulation:

F1 = ((1/k)*inner(u - u0,v) + inner(grad(u0)*u0,v)

+ nu*inner(grad(u),grad(v)) - inner(f,v))*dx

a1 = lhs(F1)

L1 = rhs(F1)

9 / 11

The FEniCS challenge!
Implement a famous benchmark simulating a laminar flow around
a cylinder. The geometry is described by

Set the kinematic viscosity ν = 0.001 m2/s and ρ = 1.0 kg/m3. A
“do-nothing” boundary condition is assumed at the outlet. Defining
Um = 1.5 m/s, the time-dependent inflow condition is given by

U = 4Umy(H − y) sin(πt/8)/H2, V = 0.

Schäfer/Turek, Benchmark Computations of Laminar Flow Around a Cylinder (1996) 10 / 11

The FEniCS challenge!

The inflow boundary lies at x = −0.2 and the outflow boundary
at x = 2.0. Compute the flow on the time interval [0, 8] with
time-step dt = 0.001. Test your implementation first for a larger
time-step dt = 0.01 and the same channel problem but with the
cylinder removed. If everything goes fine you should get
something like

Happy coding!

Schäfer/Turek, Benchmark Computations of Laminar Flow Around a Cylinder (1996) 11 / 11

