
FEniCS Course
Lecture 9: Incompressible Navier–Stokes

Contributors
Anders Logg
Marie E. Rognes

1 / 12



Definitions

• Let Ω be a domain in Rd (d = 1, 2, 3) with coordinates x

• The boundary is ∂Ω = ΓD ∪ ΓN , ΓD ∩ ΓN = ∅
• u : Ω→ Rd is the unknown fluid velocity

• p : Ω→ R is the unknown fluid pressure

• ∇u = {∂uj

∂xi
}di,j=1 NB!

• ε(u) = 1
2(∇u+∇u>) is the strain rate tensor

• σ(u, p) = 2µε(u)− pI is the Cauchy stress tensor

• ρ ∈ R is a given fluid density

• f is a given body force per unit volume

• gD is a given boundary velocity

• tN is a given boundary traction

• u0 is a given initial velocity
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The incompressible Navier–Stokes equations

Constitutive equations

ρ(u̇+ u · ∇u)−∇ · σ(u, p) = f in Ω× (0, T ]

∇ · u = 0 in Ω× (0, T ]

Boundary conditions

u = gD on ΓD × (0, T ]

σ · n = tN on ΓN × (0, T ]

Initial condition
u(·, 0) = u0 in Ω

3 / 12



Mixed variational formulation of Navier–Stokes

Multiply the momentum equation by a test function v and
integrate by parts:∫

Ω
ρ(u̇+u·∇u)·v dx+

∫
Ω
σ(u, p) : ε(v) dx =

∫
Ω
f ·v dx+

∫
Γ
N

tN ·v ds

Short-hand notation: 〈·, ·〉 is L2-inner product

〈ρu̇, v〉+ 〈ρu · ∇u, v〉+ 〈σ(u, p), ε(v)〉 = 〈f, v〉+ 〈tN , v〉ΓN

Multiply the continuity equation by a test function q and sum
up: find (u, p) ∈ V such that

〈ρu̇, v〉+ 〈ρu · ∇u, v〉+ 〈σ(u, p), ε(v)〉+ 〈∇ · u, q〉 = 〈f, v〉+ 〈tN , v〉ΓN

for all (v, q) ∈ V̂
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Discrete mixed variational form of Navier–Stokes

Time-discretization leads to a saddle-point problem on each
time step:[

M + ∆tA+ ∆tN(U) ∆tB
∆tB> 0

] [
U
P

]
=

[
b
0

]

• Efficient solution of the saddle-point problem relies on the
efficiency of special-purpose preconditioners (Uzawa
iteration, Schur complement preconditioners, . . . )

• We will use another approach (simpler and often more
efficient)
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Splitting scheme for Navier-Stokes: Core idea

• Solving the full coupled system for the velocity and the
pressure simultaneously is computationally expensive.

• To reduce computational cost, iterative splitting schemes
are an attractive alternative.

• Splitting schemes are typically based on solving for the
velocity and the pressure separately.

• We will consider a splitting scheme solving three different
(smaller!) systems at each time step n:

1 Compute the tentative velocity
2 Compute the pressure
3 Compute the corrected velocity

• Next slides show how the scheme is derived – time to pay
close attention!
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A splitting scheme for Navier–Stokes (Part 1/3)

Recall momentum equation:

ρ(u̇+ u · ∇u)−∇ · σ(u, p) = f

Consider a time step (tn−1, tn) of length kn = tn − tn−1, and
introduce

u̇(tn) ≈ Dtu
n ≡ (un − un−1)/kn

Assume un−1 is given, want to compute un.

A Crank-Nicolson approximation with explicit convection for
the time-discretization gives

ρDtu
n + ρun−1 · ∇un−1 −∇ · σ(un−1/2, pn−1/2) = fn−1/2

Define the tentative velocity uF using the approximation

ρDtu
F + ρun−1 · ∇un−1 −∇ · σ(un−1/2, pn−3/2) = fn−1/2 (1)
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A splitting scheme for Navier-Stokes (Part 2/3)

Subtract the equation for the tentative velocity from the
equation for the corrected velocity un:

ρ(Dtu
n −Dtu

F)−∇ · σ(0, pn−1/2 − pn−3/2) = 0

Definition of Dt gives:

ρ(Dtu
n−Dtu

F) = ρ

(
un − un−1

kn
− uF − un−1

kn

)
=

ρ

kn
(un−uF)

Definition of σ(u, p) = 2µε(u)− pI gives:

−∇ · σ(0, pn−1/2 − pn−3/2) = ∇ · (pn−1/2 − pn−3/2)I

= ∇(pn−1/2 − pn−3/2)

Multiplying by kn and keeping only un on the left hand side give

ρun = ρuF − kn∇(pn−1/2 − pn−3/2) (2)
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A splitting scheme for Navier-Stokes (Part 3/3)

Recall (1):

ρun = ρuF − kn∇(pn−1/2 − pn−3/2)

Assuming uF and pn−3/2 given, need pn−1/2!

Taking the divergence of (1) gives

ρ∇ · un = ∇ ·
(
ρuF − kn∇(pn−1/2 − pn−3/2)

)
We want ∇ · un = 0, i.e

0 = ∇ ·
(
ρuF − kn∇(pn−1/2 − pn−3/2)

)
or equivalently (denoting ∆p = ∇ · ∇p):

−kn∆pn−1/2 = −kn∆pn−3/2 − ρ∇ · uF (3)
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A splitting scheme for Navier-Stokes (Summary)

For each n, given un−1 and pn−3/2,

• Step 1: Compute the tentative velocity uF from

ρDtu
F + ρun−1 · ∇un−1 −∇ · σ(un−1/2, pn−3/2) = fn−1/2

• Step 2: Compute the pressure pn−1/2 from

−kn∆pn−1/2 = −kn∆pn−3/2 − ρ∇ · uF

• Step 3: Compute the corrected velocity un from

ρun = ρuF − kn∇(pn−1/2 − pn−3/2)
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Boundary conditions

We consider boundary conditions of the type

u = gD on ΓD × (0, T ]

σ · n = tN = −p̄n on ΓN × (0, T ]

• Velocity boundary conditions (u = gD on ΓD) are enforced
strongly in the finite element spaces, i.e as Dirichlet
boundary conditions.

• Traction boundary conditions (σ · n = tN) are enforced
weakly in the variational formulation.

In the splitting scheme, auxilliary boundary conditions are
required for the pressure Poisson problem:

p = p̄ on ΓN

∂nṗ = 0 on ΓD

and an auxiliary initial condition for the pressure p−1/2 = p0.
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Enforcing traction boundary conditions in
splitting scheme

Note that

σ(un−1/2, pn−3/2) = 2µε(un−1/2)− pn−3/2I − pn−1/2I + pn−1/2I

= σ(un−1/2, pn−1/2) + pn−1/2 − pn−3/2

If we want to enforce

σ(un−1/2, pn−1/2) · n = −p̄n

and
pn−1/2 · n = p̄n

Then, we should say

σ(un−1/2, pn−3/2) · n = −pn−3/2n

12 / 12



Weak formulation of N-S splitting scheme

For n = 1, 2, . . . , N , given u0 and p−1/2:

1 Compute uF with uF|Γ
D

= gD solving

〈ρDn
t u

F, v〉+ 〈ρun−1 · ∇un−1, v〉+ 〈σ(un−
1
2 , pn−3/2), ε(v)〉

= 〈fn−1/2, v〉 − 〈pn−3/2n, v〉∂Ω

for all v such that v|Γ
D

= 0.

2 Compute pn−1/2 with pn−1/2|Γ
N

= p̄

kn〈∇pn−1/2,∇q〉 = kn〈∇pn−3/2,∇q〉 − 〈ρ∇ · uF, q〉

for all q such that q|Γ
N

= 0

3 Compute un solving

〈ρun, v〉 = 〈ρuF, v〉 − kn〈∇(pn−1/2 − pn−3/2), v〉

for all v.
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Useful FEniCS tools (I)

Note grad vs. ∇:

dot(grad(u), u)

dot(u, nabla_grad(u))

Defining operators:

def sigma(u, p):

return 2.0*mu*sym(grad(u))-p*Identity(len(u))

The facet normal n:

n = FacetNormal(mesh)
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Useful FEniCS tools (II)

Assembling matrices and vectors:

A = assemble(a)

b = assemble(L)

Solving linear systems:

solve(A, x, b)

solve(A, x, b, "gmres", "ilu")

solve(A, x, b, "cg", "amg")

Extracting left- and right-hand sides:

F = <complicated expression>

a = lhs(F)

L = rhs(F)

15 / 12



The FEniCS challenge!

Solve the incompressible Navier–Stokes equations for the flow of
water around a dolphin. The water is initially at rest and the
flow is driven by a pressure gradient.
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The FEniCS challenge!

• Use the mesh dolfin channel.xml.gz, and finite element
spaces Vh = P2

2 and Qh = P1

• Compute the solution on the time interval [0, 0.1] with time
steps of size k = 0.0005

• Set p̄ = 1 kPa at the inflow (left side) and p̄ = 0 at the
outflow (right side)

• Set gD = (0, 0) on the remaining boundary

• Set f = (0, 0)

• The density of water is ρ = 1000 kg/m3 and the viscosity is
µ = 0.001002 kg/(m · s)

• To check your answer, compute the average velocity in the
x-direction:

ūx = 1
|Ω|

∫
Ω
u · (1, 0) dx

The student(s) who first produce the right answer will be
rewarded with an exclusive FEniCS surprise!
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