FEniCS Course
 Lecture 9: Incompressible Navier-Stokes

Contributors
Anders Logg
Marie E. Rognes

Definitions

- Let Ω be a domain in $\mathbb{R}^{d}(d=1,2,3)$ with coordinates x
- The boundary is $\partial \Omega=\Gamma_{\mathrm{D}} \cup \Gamma_{\mathrm{N}}, \Gamma_{\mathrm{D}} \cap \Gamma_{\mathrm{N}}=\emptyset$
- $u: \Omega \rightarrow \mathbb{R}^{d}$ is the unknown fluid velocity
- $p: \Omega \rightarrow \mathbb{R}$ is the unknown fluid pressure
- $\nabla u=\left\{\frac{\partial u_{j}}{\partial x_{i}}\right\}_{i, j=1}^{d}$ NB!
- $\varepsilon(u)=\frac{1}{2}\left(\nabla u+\nabla u^{\top}\right)$ is the strain rate tensor
- $\sigma(u, p)=2 \mu \varepsilon(u)-p I$ is the Cauchy stress tensor
- $\rho \in \mathbb{R}$ is a given fluid density
- f is a given body force per unit volume
- g_{D} is a given boundary velocity
- t_{N} is a given boundary traction
- u_{0} is a given initial velocity

The incompressible Navier-Stokes equations

Constitutive equations

$$
\begin{aligned}
\rho(\dot{u}+u \cdot \nabla u)-\nabla \cdot \sigma(u, p) & =f & & \text { in } \Omega \times(0, T] \\
\nabla \cdot u & =0 & & \text { in } \Omega \times(0, T]
\end{aligned}
$$

Boundary conditions

$$
\begin{aligned}
& u=g_{\mathrm{D}} \\
& \text { on } \Gamma_{\mathrm{D}} \times(0, T] \\
& \sigma \cdot n=t_{\mathrm{N}} \\
& \text { on } \Gamma_{\mathrm{N}} \times(0, T]
\end{aligned}
$$

Initial condition

$$
u(\cdot, 0)=u_{0} \quad \text { in } \Omega
$$

Mixed variational formulation of Navier-Stokes

Multiply the momentum equation by a test function v and integrate by parts:
$\int_{\Omega} \rho(\dot{u}+u \cdot \nabla u) \cdot v \mathrm{~d} x+\int_{\Omega} \sigma(u, p): \varepsilon(v) \mathrm{d} x=\int_{\Omega} f \cdot v \mathrm{~d} x+\int_{\Gamma_{\mathrm{N}}} t_{\mathrm{N}} \cdot v \mathrm{~d} s$
Short-hand notation: $\langle\cdot, \cdot\rangle$ is L^{2}-inner product

$$
\langle\rho \dot{u}, v\rangle+\langle\rho u \cdot \nabla u, v\rangle+\langle\sigma(u, p), \varepsilon(v)\rangle=\langle f, v\rangle+\left\langle t_{\mathrm{N}}, v\right\rangle_{\Gamma_{\mathrm{N}}}
$$

Multiply the continuity equation by a test function q and sum up: find $(u, p) \in V$ such that
$\langle\rho \dot{u}, v\rangle+\langle\rho u \cdot \nabla u, v\rangle+\langle\sigma(u, p), \varepsilon(v)\rangle+\langle\nabla \cdot u, q\rangle=\langle f, v\rangle+\left\langle t_{\mathrm{N}}, v\right\rangle_{\Gamma_{\mathrm{N}}}$
for all $(v, q) \in \hat{V}$

Discrete mixed variational form of Navier-Stokes

Time-discretization leads to a saddle-point problem on each time step:

$$
\left[\begin{array}{cc}
M+\Delta t A+\Delta t N(U) & \Delta t B \\
\Delta t B^{\top} & 0
\end{array}\right]\left[\begin{array}{l}
U \\
P
\end{array}\right]=\left[\begin{array}{l}
b \\
0
\end{array}\right]
$$

- Efficient solution of the saddle-point problem relies on the efficiency of special-purpose preconditioners (Uzawa iteration, Schur complement preconditioners, ...)
- We will use another approach (simpler and often more efficient)

Splitting scheme for Navier-Stokes: Core idea

- Solving the full coupled system for the velocity and the pressure simultaneously is computationally expensive.
- To reduce computational cost, iterative splitting schemes are an attractive alternative.
- Splitting schemes are typically based on solving for the velocity and the pressure separately.
- We will consider a splitting scheme solving three different (smaller!) systems at each time step n :
(1) Compute the tentative velocity
(2) Compute the pressure
(3) Compute the corrected velocity
- Next slides show how the scheme is derived - time to pay close attention!

A splitting scheme for Navier-Stokes (Part 1/3)

Recall momentum equation:

$$
\rho(\dot{u}+u \cdot \nabla u)-\nabla \cdot \sigma(u, p)=f
$$

Consider a time step $\left(t_{n-1}, t_{n}\right)$ of length $k_{n}=t_{n}-t_{n-1}$, and introduce

$$
\dot{u}\left(t^{n}\right) \approx D_{t} u^{n} \equiv\left(u^{n}-u^{n-1}\right) / k_{n}
$$

Assume u^{n-1} is given, want to compute u^{n}.
A Crank-Nicolson approximation with explicit convection for the time-discretization gives

$$
\rho D_{t} u^{n}+\rho u^{n-1} \cdot \nabla u^{n-1}-\nabla \cdot \sigma\left(u^{n-1 / 2}, p^{n-1 / 2}\right)=f^{n-1 / 2}
$$

Define the tentative velocity u^{\star} using the approximation

$$
\begin{equation*}
\rho D_{t} u^{\star}+\rho u^{n-1} \cdot \nabla u^{n-1}-\nabla \cdot \sigma\left(u^{n-1 / 2}, p^{n-3 / 2}\right)=f^{n-1 / 2} \tag{1}
\end{equation*}
$$

A splitting scheme for Navier-Stokes (Part 2/3)

Subtract the equation for the tentative velocity from the equation for the corrected velocity u^{n} :

$$
\rho\left(D_{t} u^{n}-D_{t} u^{\star}\right)-\nabla \cdot \sigma\left(0, p^{n-1 / 2}-p^{n-3 / 2}\right)=0
$$

Definition of D_{t} gives:
$\rho\left(D_{t} u^{n}-D_{t} u^{\star}\right)=\rho\left(\frac{u^{n}-u^{n-1}}{k_{n}}-\frac{u^{\star}-u^{n-1}}{k_{n}}\right)=\frac{\rho}{k_{n}}\left(u^{n}-u^{\star}\right)$
Definition of $\sigma(u, p)=2 \mu \varepsilon(u)-p I$ gives:

$$
\begin{aligned}
-\nabla \cdot \sigma\left(0, p^{n-1 / 2}-p^{n-3 / 2}\right) & =\nabla \cdot\left(p^{n-1 / 2}-p^{n-3 / 2}\right) I \\
& =\nabla\left(p^{n-1 / 2}-p^{n-3 / 2}\right)
\end{aligned}
$$

Multiplying by k_{n} and keeping only u^{n} on the left hand side give

$$
\begin{equation*}
\rho u^{n}=\rho u^{\star}-k_{n} \nabla\left(p^{n-1 / 2}-p^{n-3 / 2}\right) \tag{2}
\end{equation*}
$$

A splitting scheme for Navier-Stokes (Part 3/3)

Recall (1):

$$
\rho u^{n}=\rho u^{\star}-k_{n} \nabla\left(p^{n-1 / 2}-p^{n-3 / 2}\right)
$$

Assuming u^{\star} and $p^{n-3 / 2}$ given, need $p^{n-1 / 2}$!
Taking the divergence of (1) gives

$$
\rho \nabla \cdot u^{n}=\nabla \cdot\left(\rho u^{\star}-k_{n} \nabla\left(p^{n-1 / 2}-p^{n-3 / 2}\right)\right)
$$

We want $\nabla \cdot u^{n}=0$, i.e

$$
0=\nabla \cdot\left(\rho u^{\star}-k_{n} \nabla\left(p^{n-1 / 2}-p^{n-3 / 2}\right)\right)
$$

or equivalently (denoting $\Delta p=\nabla \cdot \nabla p$):

$$
\begin{equation*}
-k_{n} \Delta p^{n-1 / 2}=-k_{n} \Delta p^{n-3 / 2}-\rho \nabla \cdot u^{\star} \tag{3}
\end{equation*}
$$

A splitting scheme for Navier-Stokes (Summary)

For each n, given u^{n-1} and $p^{n-3 / 2}$,

- Step 1: Compute the tentative velocity u^{\star} from

$$
\rho D_{t} u^{\star}+\rho u^{n-1} \cdot \nabla u^{n-1}-\nabla \cdot \sigma\left(u^{n-1 / 2}, p^{n-3 / 2}\right)=f^{n-1 / 2}
$$

- Step 2: Compute the pressure $p^{n-1 / 2}$ from

$$
-k_{n} \Delta p^{n-1 / 2}=-k_{n} \Delta p^{n-3 / 2}-\rho \nabla \cdot u^{\star}
$$

- Step 3: Compute the corrected velocity u^{n} from

$$
\rho u^{n}=\rho u^{\star}-k_{n} \nabla\left(p^{n-1 / 2}-p^{n-3 / 2}\right)
$$

Boundary conditions

We consider boundary conditions of the type

$$
\begin{array}{rlr}
u=g_{\mathrm{D}} & \text { on } \Gamma_{\mathrm{D}} \times(0, T] \\
\sigma \cdot n=t_{\mathrm{N}}=-\bar{p} n & \text { on } \Gamma_{\mathrm{N}} \times(0, T]
\end{array}
$$

- Velocity boundary conditions $\left(u=g_{D}\right.$ on $\left.\Gamma_{D}\right)$ are enforced strongly in the finite element spaces, i.e as Dirichlet boundary conditions.
- Traction boundary conditions $\left(\sigma \cdot n=t_{\mathrm{N}}\right)$ are enforced weakly in the variational formulation.

In the splitting scheme, auxilliary boundary conditions are required for the pressure Poisson problem:

$$
\begin{aligned}
p=\bar{p} & \text { on } \Gamma_{\mathrm{N}} \\
\partial_{n} \dot{p}=0 & \text { on } \Gamma_{\mathrm{D}}
\end{aligned}
$$

and an auxiliary initial condition for the pressure $p^{-1 / 2}=p_{0}$.

Enforcing traction boundary conditions in splitting scheme

Note that

$$
\begin{aligned}
\sigma\left(u^{n-1 / 2}, p^{n-3 / 2}\right) & =2 \mu \varepsilon\left(u^{n-1 / 2}\right)-p^{n-3 / 2} I-p^{n-1 / 2} I+p^{n-1 / 2} I \\
& =\sigma\left(u^{n-1 / 2}, p^{n-1 / 2}\right)+p^{n-1 / 2}-p^{n-3 / 2}
\end{aligned}
$$

If we want to enforce

$$
\sigma\left(u^{n-1 / 2}, p^{n-1 / 2}\right) \cdot n=-\bar{p} n
$$

and

$$
p^{n-1 / 2} \cdot n=\bar{p} n
$$

Then, we should say

$$
\sigma\left(u^{n-1 / 2}, p^{n-3 / 2}\right) \cdot n=-p^{n-3 / 2} n
$$

Weak formulation of N-S splitting scheme

For $n=1,2, \ldots, N$, given u^{0} and $p^{-1 / 2}$:
(1) Compute u^{\star} with $\left.u^{\star}\right|_{\Gamma_{\mathrm{D}}}=g_{\mathrm{D}}$ solving

$$
\begin{array}{r}
\left\langle\rho D_{t}^{n} u^{\star}, v\right\rangle+\left\langle\rho u^{n-1} \cdot \nabla u^{n-1}, v\right\rangle+\left\langle\sigma\left(u^{n-\frac{1}{2}}, p^{n-3 / 2}\right), \varepsilon(v)\right\rangle \\
=\left\langle f^{n-1 / 2}, v\right\rangle-\left\langle p^{n-3 / 2} n, v\right\rangle_{\partial \Omega}
\end{array}
$$

for all v such that $\left.v\right|_{\Gamma_{\mathrm{D}}}=0$.
(2) Compute $p^{n-1 / 2}$ with $\left.p^{n-1 / 2}\right|_{\Gamma_{\mathrm{N}}}=\bar{p}$

$$
k_{n}\left\langle\nabla p^{n-1 / 2}, \nabla q\right\rangle=k_{n}\left\langle\nabla p^{n-3 / 2}, \nabla q\right\rangle-\left\langle\rho \nabla \cdot u^{\star}, q\right\rangle
$$

for all q such that $\left.q\right|_{\Gamma_{\mathrm{N}}}=0$
(3) Compute u^{n} solving

$$
\left\langle\rho u^{n}, v\right\rangle=\left\langle\rho u^{\star}, v\right\rangle-k_{n}\left\langle\nabla\left(p^{n-1 / 2}-p^{n-3 / 2}\right), v\right\rangle
$$

for all v.

Useful FEniCS tools (I)

Note grad vs. ∇ :

```
dot(grad(u), u)
dot(u, nabla_grad(u))
```

Defining operators:

```
def sigma(u, p):
    return 2.0*mu*sym(grad(u))-p*Identity(len(u))
```

The facet normal n :

```
n = FacetNormal(mesh)
```


Useful FEniCS tools (II)

Assembling matrices and vectors:

```
A = assemble(a)
b = assemble(L)
```

Solving linear systems:

```
solve(A, x, b)
solve(A, x, b, "gmres", "ilu")
solve(A, x, b, "cg", "amg")
```

Extracting left- and right-hand sides:

```
F = <complicated expression>
a = lhs(F)
L = rhs(F)
```


The FEniCS challenge!

Solve the incompressible Navier-Stokes equations for the flow of water around a dolphin. The water is initially at rest and the flow is driven by a pressure gradient.

The FEniCS challenge!

- Use the mesh dolfin_channel.xml.gz, and finite element spaces $V_{h}=\mathcal{P}_{2}^{2}$ and $Q_{h}=\mathcal{P}_{1}$
- Compute the solution on the time interval $[0,0.1]$ with time steps of size $k=0.0005$
- Set $\bar{p}=1 \mathrm{kPa}$ at the inflow (left side) and $\bar{p}=0$ at the outflow (right side)
- Set $g_{\mathrm{D}}=(0,0)$ on the remaining boundary
- Set $f=(0,0)$
- The density of water is $\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$ and the viscosity is $\mu=0.001002 \mathrm{~kg} /(\mathrm{m} \cdot \mathrm{s})$
- To check your answer, compute the average velocity in the x-direction:

$$
\bar{u}_{x}=\frac{1}{|\Omega|} \int_{\Omega} u \cdot(1,0) \mathrm{d} x
$$

The student(s) who first produce the right answer will be rewarded with an exclusive FEniCS surprise!

