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The heat equation

We will solve the simplest extension of the Poisson problem into
the time domain, the heat equation:

∂u

∂t
−∆u = f in Ω for t > 0

u = g on ∂Ω for t > 0

u = u0 in Ω at t = 0

The solution u = u(x, t), the right-hand side f = f(x, t) and the
boundary value g = g(x, t) may vary in space (x = (x0, x1, ...))
and time (t). The initial value u0 is a function of space only.
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Time-discretization of the heat equation

We discretize in time using the implicit Euler (dG(0)) method:

∂u

∂t
(tn) ≈ un − un−1

∆t
, u(tn) ≈ un, fn = f(tn)

Semi-discretization of the heat equation:

un − un−1

∆t
−∆un = fn

Algorithm

1 Start with u0 and choose a timestep ∆t > 0.

2 For n = 1, 2, . . ., solve for un:

un −∆t∆un = un−1 + ∆tfn
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Variational problem for the heat equation

Find un ∈ V n such that

a(un, v) = Ln(v)

for all v ∈ V̂ where

a(u, v) =

∫
Ω
uv + ∆t∇u · ∇v dx

Ln(v) =

∫
Ω
un−1v + ∆tfnv dx

Note that the bilinear form a(u, v) is constant while the linear
form Ln depends on n
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Detailed time-stepping algorithm for the heat
equation

Define the boundary condition
Compute u0 as the projection of the given initial value
Define the forms a and L
Assemble the matrix A from the bilinear form a
t← ∆t
while t 6 T do

Assemble the vector b from the linear form L
Apply the boundary condition
Solve the linear system AU = b for U and store in u1

t← t+ ∆t
u0 ← u1 (get ready for next step)

end while
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Test problem

We construct a test problem for which we can easily check the
answer. We first define the exact solution by

u = 1 + x2 + αy2 + βt

We insert this into the heat equation:

f = u̇−∆u = β − 2− 2α

The initial condition is

u0 = 1 + x2 + αy2

This technique is called the method of manufactured solutions
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Handling time-dependent expressions
We define a time-dependent expression for the boundary value:

alpha = 3; beta = 1.2

t = 0.0

g = Expression("1 + x[0]*x[0] + \

alpha*x[1]*x[1] + beta*t",

alpha=alpha , beta=beta , t=t,

degree=2)

Then, we must explicitly update t and g:

t = 1.0

g.t = t

An alternative (robust) approach is to define t as a Constant:

t = Constant(0.0)

g = Expression("...", ..., t=t, ...)

t.assign(1.0)

# No need to update g itself
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Projection and interpolation

We need to project the initial value into Vh:

u0 = project(g, V)

We can also interpolate the initial value into Vh:

u0 = interpolate(g, V)
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A closer look at solve

For linear problems, this code

solve(a == L, u, bcs)

is equivalent to this

# Assembling a bilinear form yields a matrix

A = assemble(a)

# Assembling a linear form yields a vector

b = assemble(L)

# Applying boundary condition info to system

for bc in bcs:

bc.apply(A, b)

# Solve Ax = b

solve(A, u.vector (), b)
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Implementing the variational problem

# Decide on a time step

dt = 0.3

# Create Functions for previous and current sol.s

u0 = project(g, V)

u1 = Function(V)

# Define the variational formulation

u = TrialFunction(V)

v = TestFunction(V)

f = Constant(beta - 2 - 2*alpha)

a = u*v*dx + dt*inner(grad(u), grad(v))*dx

L = u0*v*dx + dt*f*v*dx

# Define the boundary condition

bc = DirichletBC(V, g, "on_boundary")

# Assemble only once , before time -stepping

A = assemble(a)
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Implementing the time-stepping loop

T = 2 # Set end time

t.assign(dt) # Solve on [0, dt] first

while t <= T:

b = assemble(L) # Assemble the rhs vector

bc.apply(A, b) # Apply boundary conditions

# Solve linear system

solve(A, u1.vector (), b)

# Update time and previous solution

t1 = float(t + dt)

t.assign(t1) # t := t1 + dt

u0.assign(u1) # u0 := u1
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FEniCS programming exercise: heat equation
Consider the heat equation problem:

∂u

∂t
−∆u = f in Ω = [0, 1]2 for t > 0

u(x, t) = g(x, t) for x ∈ ∂Ω for t > 0

u(x, 0) = g(x, 0) for x ∈ Ω

with

f = β − 2− 2α

g(x, t) = 1 + x2
0 + αx2

1 + βt (x = (x0, x1))

Ex. 1 Compute an approximate solution at T = 1.8

Ex. 2 Compare the approximate solution to the exact solution at
T = 1.8. How large is the error (in the eyenorm and in the
L2(Ω) norm)?

Ex. 3 Compute an approximate solution with the same set-up
but on Ω = [0, 1]3 ⊂ R3.
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