
FEniCS Course
Lecture 3: Static nonlinear PDEs

Contributors
Marie E. Rognes
Garth N. Wells

1 / 17

The Stokes equations

We consider the stationary Stokes equations: find the velocity u
and the pressure p such that

−div(2νε(u)− p I) = f in Ω

div u = 0 in Ω

where ε(u) = 1
2

(
gradu+ (gradu)T

)
and with boundary

conditions

u = 0 on ∂ΩD

−(2νε− p I) · n = p0 n on ∂ΩN

If viscosity ν varies with u (or p),

ν = ν(u)

this is a nonlinear system of partial differential equations.

2 / 17

The Stokes equations: variational formulation

Assume that u ∈ V and p ∈ Q, then w = (u, p) ∈ V ×Q = W .
Let f = 0.

Step 1

Multiply by test functions (v, q) ∈W and integrate first equation by
parts∫

Ω
2νε(u) · grad v dx−

∫
Ω
p div v dx−

∫
∂Ω

(2νε(u)− p I) · n · v ds = 0∫
Ω

div u q dx = 0

Step 2

Adding the equations and incorporating the boundary conditions we
obtain: find (u, p) ∈W = V0 ×Q such that∫

Ω
2νε(u) · grad v dx−

∫
Ω
pdiv v dx−

∫
Ω

div u q dx+

∫
∂ΩN

p0 v · n ds = 0

for all (v, q) ∈W = V0 ×Q where V0 = {v ∈ V such that v|∂ΩD
= 0}.

3 / 17

Canonical nonlinear variational problem

The following canonical notation is used in FEniCS for
(possibly) nonlinear problems:

Find w ∈W such that

F (w; y) = 0

for all y ∈ Ŵ .

Note
Here, w is a function, and y
is a test function, and so F
is a linear form.

For the Stokes example

The functions are w = (u, p), y = (v, q) and the form F is

F (w; y) =

∫
Ω

2νε(u) · grad v dx−
∫

Ω
p div v dx−

∫
Ω

div u q dx

+

∫
∂ΩN

p0 v · n ds

4 / 17

The Stokes equations introduce some new
concepts

• Mixed function spaces

• Integration over boundaries

• Solving nonlinear problems (if nonlinear viscosity)

• (Reading a mesh from file)

• (Adjusting parameters)

5 / 17

Step by step: initializing a mesh from file

DOLFIN can read and write meshes from its own .xml or
.xml.gz format

mesh = Mesh("dolfin -1.xml.gz")

plot(mesh)

Conversion tools exist for other mesh formats

$ man dolfin-convert

We will need the normal on the mesh boundary facets:

n = FacetNormal(mesh)

6 / 17

Step by step: creating mixed function spaces
Mixed elements are created by taking the product of more basic
elements

Define Taylor --Hood function space W

P2 = VectorElement("Lagrange", triangle , 2)

P1 = FiniteElement("Lagrange", triangle , 1)

TH = P2 * P1

#TH = MixedElement ([P2 , P1])

W = FunctionSpace(mesh , TH)

You can define functions on mixed spaces and split into
components:

w = Function(W)

(u, p) = split(w)

... and arguments:

y = TestFunction(W)

(v, q) = split(y)

(v, q) = TestFunctions(W)
7 / 17

Step by step: more about defining expressions

Again, the pressure boundary value can be defined using an
expression:

p0 = Expression("1 - a*x[0]", degree=1, a=2)

When we specify the degree argument, this will be used as the
polynomial degree when the expression is used in forms.
Otherwise, the degree will be estimated heuristically.

All parameters (in this case a) must be specified at
initialization, and can be modified later

8 / 17

FAQ: What is the difference between a Function

and an Expression?

Function
... is described by expansion coefficients with reference to a
FunctionSpace with a given basis: u =

∑
i uiφi

u = Function(V) # Defines the function space

u.vector () # The coefficients

Expression

... given by an evaluation formula (more or less explicit)

f = Expression("...", degree=...)

class Source(Expression):

def eval(self , values , x)

...

During assemble an Expression is interpolated into a polynomial
space of the given degree on each cell.

9 / 17

Step by step: defining the viscosity

We may want to play with different viscosities.

In the simplest case, it is just constant: ν = 0.1

nu = 0.1

... or it can vary with the domain: ν = 1 + 100x1

nu = Expression("1 + 100*x[1]", degree=1)

... or it can vary with the unknown: ν = (u · u)1/2

w = Function(W)

(u, p) = split(w)

def viscosity(u):

return inner(u, u)**(1./2)

nu = viscosity(u)

10 / 17

Step by step: defining a boundary condition on
a subspace

Assume that we have a mixed function space:

W = FunctionSpace(mesh , V * Q)

The subspaces of W can be retrieved using sub:

W0 = W.sub(0)

Note that W0 is not completely the same as V

The following code defines a homogenous Dirichlet (boundary)
condition on the first subspace at the part where x0 = 0.

g = (0.0, 0.0)

bc = DirichletBC(W.sub(0), g, "near(x[0], 0.0)")

11 / 17

Stokes: defining the variational form
Assume that we have

w = Function(W)

(u, p) = split(w)

(v, q) = TestFunctions(W)

p0 = ...; nu = ...; n = ...

We can now specify the linear form F

epsilon = 2*sym(grad(u))

F = (nu*inner(epsilon , grad(v)) \

- div(u)*q - div(v)*p)*dx \

+ p0*dot(v, n)*ds

Note that dx denotes integration over cells, ds denotes integration
over exterior (boundary) facets, dS denotes integration over interior
facets.

FAQ: How to specify integration over only subdomains? See the
Poisson with multiple subdomains demo.

12 / 17

Step by step: solving (nonlinear) variational
problems

Once a variational problem has been defined, it may be solved
by calling the solve function (as for linear problems):

solve(F == 0, w, bc)

Or more verbosely

dF = derivative(F, w)

pde = NonlinearVariationalProblem(F, w, bc , dF)

solver = NonlinearVariationalSolver(pde)

solver.solve ()

Extracting the subfunctions (as DOLFIN functions)

(u, p) = w.split(deepcopy=True)

13 / 17

Step by step: adjusting parameters in DOLFIN

Adjusting global parameters

from fenics import *

info(parameters , True)

parameters["form_compiler"]["cpp_optimize"] = True

#parameters [" form_compiler "][" optimize "] = True

Adjusting local (and nested) parameters

solver = NonlinearVariationalSolver(pde)

info(solver.parameters , True)

solver.parameters["symmetric"] = True

solver.parameters["newton_solver"]["maximum_iterations"]

= 100

14 / 17

Stokes: a complete code example
Code

from __future__ import print_function

from fenics import *

Use -02 optimization

parameters["form_compiler"]["cpp_optimize"] = True

Define mesh and geometry

mesh = Mesh("dolfin -2.xml.gz")

x = SpatialCoordinate(mesh)

n = FacetNormal(mesh)

Define Taylor --Hood function space W

P2 = VectorElement("Lagrange", triangle , 2)

P1 = FiniteElement("Lagrange", triangle , 1)

TH = MixedElement ([P2, P1])

W = FunctionSpace(mesh , TH)

Define Function and TestFunction(s)

w = Function(W)

(u, p) = split(w)

(v, q) = TestFunctions(W)

Define viscosity and bcs

nu = Expression("0.2*(1+pow(x[1],2))", degree=2)

p0 = (1.0 - x[0]) # or Expression ("1.0-x[0]", degree=1)

bcs = DirichletBC(W.sub(0), (0.0, 0.0),

"on_boundary && !(near(x[0], 0.0) || near(x[0], 1.0))")

Define variational form

epsilon = sym(grad(u))

F = (2*nu*inner(epsilon , grad(v)) - div(u)*q - div(v)*p)*dx\

+ p0*dot(v,n)*ds

Solve problem

solve(F == 0, w, bcs)

Plot solutions

plot(u, title="Velocity")

plot(p, title="Pressure")

interactive ()

15 / 17

Stokes: running the example yields

$ python stokes_example.py

16 / 17

FEniCS programming challenge!

Solve the Stokes problem on Ω defined by the dolfin-1.xml.gz

mesh, defined by the following data

−div(2νε(u)− p I) = 0 in Ω

div u = 0 in Ω

−(2νε(u)− p I) · n = p0 n on ∂ΩN = {(x0, x1)|x0 = 0 or x0 = 1}
p0 = 1− x0

u = 0 on ∂ΩD = ∂Ω\∂ΩN

Ex. 1 Consider a constant viscosity ν = 0.2, plot the solutions.

Ex. 2 Consider the nonlinear viscosity

ν = ν(u) = 0.5(gradu · gradu)1/(2(n−1)), n = 4

Plot the solutions and estimate the average velocity in the
x[0]-direction.

Hint: For Ex. 2, you may need to compute an approximation first in order to provide a

suitable initial guess to the Newton solver

17 / 17

