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Hello World!

We will solve Poisson’s equation, the Hello World of scientific
computing:

−∆u = f in Ω

u = u0 on ∂Ω

Poisson’s equation arises in numerous contexts:

• heat conduction, electrostatics, diffusion of substances,
twisting of elastic rods, inviscid fluid flow, water waves,
magnetostatics

• as part of numerical splitting strategies of more
complicated systems of PDEs, in particular the
Navier–Stokes equations
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The FEM cookbook

Au = f

a(u, v) = L(v)

a(uh, v) = L(v)

AU = b
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Solving PDEs in FEniCS

Solving a physical problem with FEniCS consists of the
following steps:

1 Identify the PDE and its boundary conditions

2 Reformulate the PDE problem as a variational problem

3 Make a Python program where the formulas in the
variational problem are coded, along with definitions of
input data such as f , u0, and a mesh for Ω

4 Add statements in the program for solving the variational
problem, computing derived quantities such as ∇u, and
visualizing the results
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Deriving a variational problem for Poisson’s
equation

The simple recipe is: multiply the PDE by a test function v and
integrate over Ω:

−
∫

Ω
(∆u)v dx =

∫
Ω
fv dx

Then integrate by parts and set v = 0 on the Dirichlet
boundary:

−
∫

Ω
(∆u)v dx =

∫
Ω
∇u · ∇v dx−

∫
∂Ω

∂u

∂n
v ds︸ ︷︷ ︸

=0

We find that: ∫
Ω
∇u · ∇v dx =

∫
Ω
fv dx
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Variational problem for Poisson’s equation

Find u ∈ V such that∫
Ω
∇u · ∇v dx =

∫
Ω
fv dx

for all v ∈ V̂

The trial space V and the test space V̂ are (here) given by

V = {v ∈ H1(Ω) : v = u0 on ∂Ω}
V̂ = {v ∈ H1(Ω) : v = 0 on ∂Ω}
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Discrete variational problem for Poisson’s
equation

We approximate the continuous variational problem with a
discrete variational problem posed on finite dimensional
subspaces of V and V̂ :

Vh ⊂ V
V̂h ⊂ V̂

Find uh ∈ Vh ⊂ V such that∫
Ω
∇uh · ∇v dx =

∫
Ω
fv dx

for all v ∈ V̂h ⊂ V̂
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Canonical variational problem

The following canonical notation is used in FEniCS: find u ∈ V
such that

a(u, v) = L(v)

for all v ∈ V̂

For Poisson’s equation, we have

a(u, v) =

∫
Ω
∇u · ∇v dx

L(v) =

∫
Ω
fv dx

a(u, v) is a bilinear form and L(v) is a linear form
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Poisson example 1

Strong form

Let Ω = [0, 1]× [0, 1]. Solve

−∆u = 1 in Ω

u = 0 on ∂Ω

Weak form
Find u ∈ H1

0 (Ω) such that for all v ∈ H1
0 (Ω)∫

Ω
∇u · ∇v dx︸ ︷︷ ︸
a(u,v)

=

∫
Ω

1v dx︸ ︷︷ ︸
L(v)
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Poisson example 2
• Domain:

Ω = [0, 1]× [0, 1]

∂ΩD = {0} × [0, 1] ∪ {1} × [0, 1]

∂ΩN = [0, 1]× {0} ∪ [0, 1]× {1}

• Source and boundary values:

f(x, y) = 2 cos(2πx) cos(2πy)

gD(x, y) = 0.1 cos(2πy)

Strong form

−∆u = f in Ω

u = gD on ∂ΩD

∂u

∂n
= 0 on ∂ΩN

Weak form
Find u ∈ V such that for all v ∈ V̂∫

Ω
∇u · ∇v dx︸ ︷︷ ︸
a(u,v)

=

∫
Ω
fv dx︸ ︷︷ ︸
L(v)

• Function spaces:
V = {v ∈ H1(Ω) : v = gD on ∂ΩD}
V̂ = {v ∈ H1(Ω) : v = 0 on ∂ΩD}
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Poisson example 3
• Domain:

Ω = [0, 1]× [0, 1] \ dolphin domain

∂ΩD = {0} × [0, 1] ∪ {1} × [0, 1]

∂ΩN = ∂Ω \ ∂ΩD

• Source and boundary values:

f(x, y) = 2 cos(2πx) cos(2πy)

gD(x, y) = 0.5 cos(2πy) on x = 0

gD(x, y) = 1 on x = 1

gN (x, y) = sin(πx) sin(πy)

Strong form

−∆u = f in Ω

u = gD on ∂ΩD

− ∂u
∂n

= gN on ∂ΩN

Weak form
Find u ∈ V such that for all v ∈ V̂∫

Ω
∇u · ∇v dx︸ ︷︷ ︸
a(u,v)

=

∫
Ω
fv dx+

∫
∂ΩN

gv ds︸ ︷︷ ︸
L(v)

• Function spaces:
V = {v ∈ H1(Ω) : v = gD on ∂ΩD}
V̂ = {v ∈ H1(Ω) : v = 0 on ∂ΩD}
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Poisson example 3: Mission possible
Your mission

• open and plot the dolfin mesh saved in dolfin-channel.xml
• solve the discrete variational problem
• export the solution to a pvd file and visualize it in Paraview

Your tools
Read in a mesh

mesh = Mesh("dolfin -channel.xml")

Inhomogeneus Neuman boundary condition

L = ... + g_N*v*ds

List of Dirchlet boundary conditions

bc0 = DirichletBC (...)

bc1 = DirichletBC (...)

bcs = [bc0 , bc1]

Save solution in VTK format

u_file = File("poisson_3.pvd")

u_file << u
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Poisson example 3: Extra mission

• Choose a variable conductivity of the form

k(x, y) = 1 + e(x2+y2)

• What is the expression of the heat flux σ across the
boundary now (opposed to σ · n = ∂u

∂n in the original
problem)?

• Replace the inhomogeneus Neumann boundary condition
by a Robin boundary condition

−σ · n = u− gN on ∂ΩN

• Solve −∇ · (k(x, y)∇u) = f in Ω

u = gD on ∂ΩD

−σ · n = u− gN on ∂ΩN

by finding the weak formulation of the problem and solving
it using FEniCS
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Poisson example 4
• Domain:

Ω1 = [0, 1]× [0, 0.5]

Ω2 = [0, 1]× [0.5, 1]

Ω = Ω1 ∪ Ω2

∂ΩD = ∂Ω

• Conductivity, source and boundary values:

k(x, y) =

{
10 in Ω1

50 + e50(0.5−y)2 in Ω2

f(x, y) = 1

gD(x, y) = 0

Strong form

−∇ · (k1(x, y)∇u) = f in Ω1

−∇ · (k2(x, y)∇u) + u = f in Ω2

u = gD on ∂ΩD

Weak form
Find u ∈ V such that for all v ∈ V̂∫

Ω1

k1∇u · ∇v dx+

∫
Ω2

k2∇u · ∇v + uv dx︸ ︷︷ ︸
a(u,v)

=

∫
Ω
fv dx︸ ︷︷ ︸
L(v)

• Function spaces:
V = {v ∈ H1(Ω) : v = gD on ∂ΩD}
V̂ = {v ∈ H1(Ω) : v = 0 on ∂ΩD}
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The FEniCS challenge!
• Domain:

ΩDO = dolphin domain

Ω = [0, 1]× [0, 1] \ ΩDO

Ω1 = {T ∈ T : T ⊂ B0.35(0.5, 0.5)}
Ω2 = Ω \ Ω1

∂ΩD = {0} × [0, 1] ∪ {1} × [0, 1]

∂ΩN,1 = ∂ΩDO

∂ΩN,2 = [0, 1]× {0} ∪ [0, 1]× {1}

• Conductivity, source and boundary values:

k(x, y) =

{
10 in Ω1

50 + e50(0.5−y)2 in Ω2

f(x, y) = 1

gD(x, y) = 0

gN,1(x, y) = 0

gN,2(x, y) = sin(πx) sin(πy)

• As an alternative, reuse the source function
and the Dirichlet boundary values from
exercise 3:

f(x, y) = 2 cos(2πx) cos(2πy)

gD(x, y) = 0.5 cos(2πy) on x = 0

gD(x, y) = 1 on x = 1
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The FEniCS challenge!

Solve
−∇ · (k1(x, y)∇u) + u = f in Ω1

−∇ · (k2(x, y)∇u) = f in Ω2

u = gD on ∂ΩD

− ∂u
∂n

= gN,1 on ∂ΩN,1

− ∂u
∂n

= u− gN,2 on ∂ΩN,2

by first finding the weak formulation
and then solving the system numerically
using FEniCS

Tools
Define facet markers

boundary_markers = FacetFunction("size_t",mesh)

...

A redefinition of “ds” is necessary as well (why?). How will that probably look
like?
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