FEniCS Course

Lecture 0: Introduction to FEM

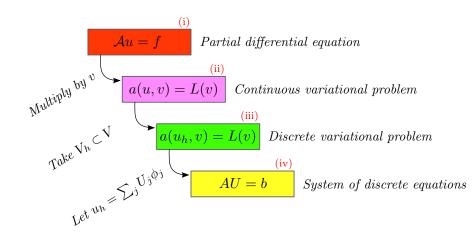
Contributors
Anders Logg

What is FEM?

The finite element method is a framework and a recipe for discretization of differential equations

- Ordinary differential equations
- Partial differential equations
- Integral equations
- A recipe for discretization of PDE
- PDE $\rightarrow Ax = b$
- Different bases, stabilization, error control, adaptivity

The FEM cookbook



The PDE (i)

Consider Poisson's equation, the Hello World of partial differential equations:

$$-\Delta u = f \quad \text{in } \Omega$$
$$u = u_0 \quad \text{on } \partial \Omega$$

Poisson's equation arises in numerous applications:

- heat conduction, electrostatics, diffusion of substances, twisting of elastic rods, inviscid fluid flow, water waves, magnetostatics, ...
- as part of numerical splitting strategies for more complicated systems of PDEs, in particular the Navier-Stokes equations

From PDE (i) to variational problem (ii)

The simple recipe is: multiply the PDE by a test function v and integrate over Ω :

$$-\int_{\Omega} (\Delta u) v \, \mathrm{d}x = \int_{\Omega} f v \, \mathrm{d}x$$

Then integrate by parts and set v = 0 on the Dirichlet boundary:

$$-\int_{\Omega} (\Delta u) v \, dx = \int_{\Omega} \nabla u \cdot \nabla v \, dx - \underbrace{\int_{\partial \Omega} \frac{\partial u}{\partial n} v \, ds}_{=0}$$

We find that:

$$\int_{\Omega} \nabla u \cdot \nabla v \, \mathrm{d}x = \int_{\Omega} f v \, \mathrm{d}x$$

The variational problem (ii)

Find $u \in V$ such that

$$\int_{\Omega} \nabla u \cdot \nabla v \, \mathrm{d}x = \int_{\Omega} f v \, \mathrm{d}x$$

for all $v \in \hat{V}$

The trial space V and the test space \hat{V} are (here) given by

$$V = \{ v \in H^1(\Omega) : v = u_0 \text{ on } \partial \Omega \}$$

$$\hat{V} = \{v \in H^1(\Omega) : v = 0 \text{ on } \partial \Omega\}$$

From continuous (ii) to discrete (iii) problem

We approximate the continuous variational problem with a discrete variational problem posed on finite dimensional subspaces of V and \hat{V} :

$$V_h \subset V$$
$$\hat{V}_h \subset \hat{V}$$

Find $u_h \in V_h \subset V$ such that

$$\int_{\Omega} \nabla u_h \cdot \nabla v \, \mathrm{d}x = \int_{\Omega} f v \, \mathrm{d}x$$

for all $v \in \hat{V}_h \subset \hat{V}$

From discrete variational problem (iii) to discrete system of equations (iv)

Choose a basis for the discrete function space:

$$V_h = \operatorname{span} \{\phi_j\}_{j=1}^N$$

Make an ansatz for the discrete solution:

$$u_h = \sum_{j=1}^{N} U_j \phi_j$$

Test against the basis functions:

$$\int_{\Omega} \nabla (\sum_{j=1}^{N} U_j \phi_j) \cdot \nabla \phi_i \, \mathrm{d}x = \int_{\Omega} f \phi_i \, \mathrm{d}x$$

From discrete variational problem (iii) to discrete system of equations (iv), contd.

Rearrange to get:

$$\sum_{j=1}^{N} U_j \underbrace{\int_{\Omega} \nabla \phi_j \cdot \nabla \phi_i \, \mathrm{d}x}_{A_{ij}} = \underbrace{\int_{\Omega} f \phi_i \, \mathrm{d}x}_{b_i}$$

A linear system of equations:

$$AU = b$$

where

$$A_{ij} = \int_{\Omega} \nabla \phi_j \cdot \nabla \phi_i \, \mathrm{d}x \tag{1}$$

$$b_i = \int_{\Omega} f \phi_i \, \mathrm{d}x \tag{2}$$

The canonical abstract problem

(i) Partial differential equation:

$$Au = f$$
 in Ω

(ii) Continuous variational problem: find $u \in V$ such that

$$a(u, v) = L(v)$$
 for all $v \in \hat{V}$

(iii) Discrete variational problem: find $u_h \in V_h \subset V$ such that

$$a(u_h, v) = L(v)$$
 for all $v \in \hat{V}_h$

(iv) Discrete system of equations for $u_h = \sum_{j=1}^{N} U_j \phi_j$:

$$AU = b$$

$$A_{ij} = a(\phi_j, \phi_i)$$

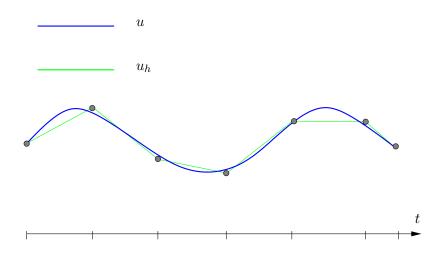
$$b_i = L(\phi_i)$$

Important topics

- How to choose V_h ?
- How to compute A and b
- How to solve AU = b?
- How large is the error $e = u u_h$?
- Extensions to nonlinear problems

How to choose V_h

Finite element function spaces

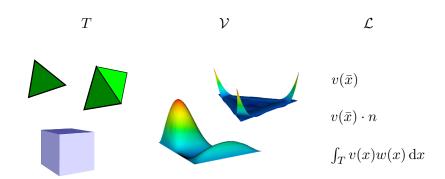


The finite element definition (Ciarlet 1975)

A finite element is a triple $(T, \mathcal{V}, \mathcal{L})$, where

- the domain T is a bounded, closed subset of \mathbb{R}^d (for $d=1,2,3,\ldots$) with nonempty interior and piecewise smooth boundary
- the space $\mathcal{V} = \mathcal{V}(T)$ is a finite dimensional function space on T of dimension n
- the set of degrees of freedom (nodes) $\mathcal{L} = \{\ell_1, \ell_2, \dots, \ell_n\}$ is a basis for the dual space \mathcal{V}' ; that is, the space of bounded linear functionals on \mathcal{V}

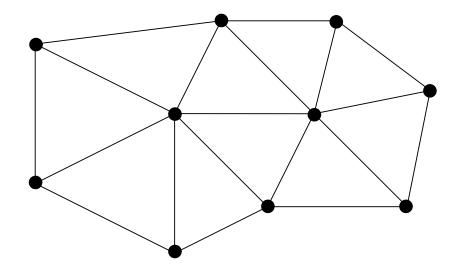
The finite element definition (Ciarlet 1975)



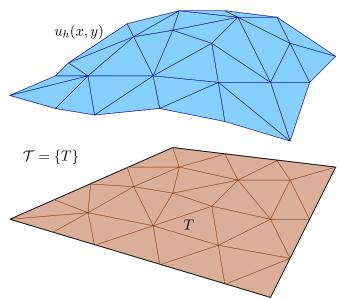
The linear Lagrange element: $(T, \mathcal{V}, \mathcal{L})$

- \bullet T is a line, triangle or tetrahedron
- \mathcal{V} is the first-degree polynomials on T
- ullet L is point evaluation at the vertices

The linear Lagrange element: \mathcal{L}



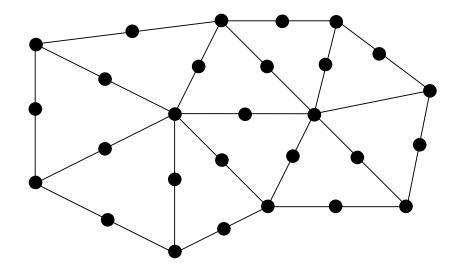
The linear Lagrange element: V_h



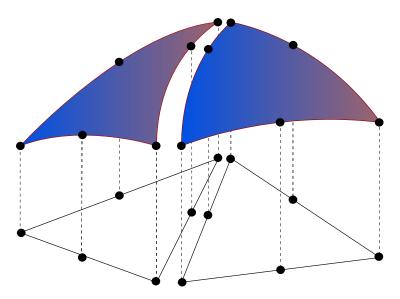
The quadratic Lagrange element: $(T, \mathcal{V}, \mathcal{L})$

- T is a line, triangle or tetrahedron
- \mathcal{V} is the second-degree polynomials on T
- ullet L is point evaluation at the vertices and edge midpoints

The quadratic Lagrange element: \mathcal{L}



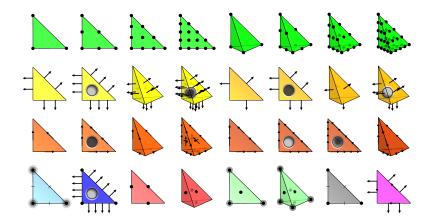
The quadratic Lagrange element: V_h



Families of elements

Nedelec Hermite Brezzi-Douglas-Fortin-Marini Mardal-Tai-Winther **Raviart-Thomas**

Families of elements



Computing the sparse matrix A

Naive assembly algorithm

$$A=0$$
 for $i=1,\dots,N$ for $j=1,\dots,N$ $A_{ij}=a(\phi_j,\phi_i)$ end for

The element matrix

The global matrix A is defined by

$$A_{ij} = a(\phi_j, \phi_i)$$

The element matrix A_T is defined by

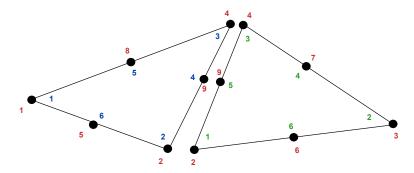
$$A_{T,ij} = a_T(\phi_j^T, \phi_i^T)$$

The local-to-global mapping

The global matrix ι_T is defined by

$$I = \iota_T(i)$$

where I is the global index corresponding to the local index i



The assembly algorithm

$$A = 0$$

for $T \in \mathcal{T}$

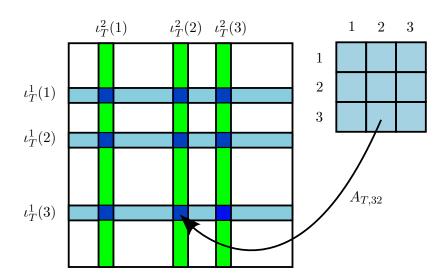
Compute the element matrix A_T

Compute the local-to-global mapping ι_T

Add A_T to A according to ι_T

end for

Adding the element matrix A_T



Solving AU = b

Direct methods

- Gaussian elimination
 - Requires $\sim \frac{2}{3}N^3$ operations
- LU factorization: A = LU
 - Solve requires $\sim \frac{2}{3}N^3$ operations
 - \bullet Reuse L and U for repeated solves
- Cholesky factorization: $A = LL^{\top}$
 - Works if A is symmetric and positive definite
 - Solve requires $\sim \frac{1}{3}N^3$ operations
 - \bullet Reuse L for repeated solves

Iterative methods

Krylov subspace methods

- GMRES (Generalized Minimal RESidual method)
- CG (Conjugate Gradient method)
 - Works if A is symmetric and positive definite
- BiCGSTAB, MINRES, TFQMR, ...

Multigrid methods

- GMG (Geometric MultiGrid)
- AMG (Algebraic MultiGrid)

Preconditioners

• ILU, ICC, SOR, AMG, Jacobi, block-Jacobi, additive Schwarz, . . .

Which method should I use?

Rules of thumb

- Direct methods for small systems
- Iterative methods for large systems
- Break-even at ca 100–1000 degrees of freedom
- Use a symmetric method for a symmetric system
 - Cholesky factorization (direct)
 - CG (iterative)
- Use a multigrid preconditioner for Poisson-like systems
- GMRES with ILU preconditioning is a good default choice