FEniCS Course

Lecture 12: Computing sensitivities

Contributors
Simon Funke

Computing sensitivities

So far we focused on solving PDEs.
But often we are also interested the sensitivity with respect to certain parameters, for example

- initial conditions,
- forcing terms,
- unkown coefficients.

Computing sensitivities

So far we focused on solving PDEs.
But often we are also interested the sensitivity with respect to certain parameters, for example

- initial conditions,
- forcing terms,
- unkown coefficients.

Computing sensitivities

So far we focused on solving PDEs.
But often we are also interested the sensitivity with respect to certain parameters, for example

- initial conditions,
- forcing terms,
- unkown coefficients.

Example

Consider the Poisson's equation

$$
\begin{aligned}
-\nu \Delta u=m & \text { in } \Omega \\
u=0 & \text { on } \partial \Omega
\end{aligned}
$$

together with the objective functional

$$
J(u)=\frac{1}{2} \int_{\Omega}\left\|u-u_{d}\right\|^{2} \mathrm{~d} x
$$

where u_{d} is a known function.

Goal

Compute the sensitivity of J with respect to the parameter m : $\mathrm{d} J / \mathrm{d} m$.

Comput. deriv. (i) General formulation

Given

- Parameter m,
- PDE $F(u, m)=0$ with solution u.
- Objective functional $J(u, m) \rightarrow \mathbb{R}$,

Goal
Compute dJ/dm.
Reduced functional
Consider u as an implicit function of m by solving the PDE. With that we define the reduced functional R :

$$
R(m)=J(u(m), m)
$$

Comput. deriv. (i) General formulation

Given

- Parameter m,
- PDE $F(u, m)=0$ with solution u.
- Objective functional $J(u, m) \rightarrow \mathbb{R}$,

Goal
Compute $\mathrm{d} J / \mathrm{d} m$.
Reduced functional
Consider u as an implicit function of m by solving the PDE. With that we define the reduced functional R :

$$
R(m)=J(u(m), m)
$$

Comput. deriv. (i) General formulation

Given

- Parameter m,
- PDE $F(u, m)=0$ with solution u.
- Objective functional $J(u, m) \rightarrow \mathbb{R}$,

Goal
Compute $\mathrm{d} J / \mathrm{d} m$.
Reduced functional
Consider u as an implicit function of m by solving the PDE. With that we define the reduced functional R :

$$
R(m)=J(u(m), m)
$$

Comput. deriv. (ii) Reduced functional

Reduced functional:

$$
R(m) \equiv J(u(m), m)
$$

Taking the derivative of with respect to m yields:

$$
\frac{\mathrm{d} R}{\mathrm{~d} m}=\frac{\mathrm{d} J}{\mathrm{~d} m}=\frac{\partial J}{\partial u} \frac{\mathrm{~d} u}{\mathrm{~d} m}+\frac{\partial J}{\partial m} .
$$

Computing $\frac{\partial J}{\partial u}$ and $\frac{\partial J}{\partial m}$ is straight-forward, but how handle $\frac{\mathrm{d} u}{\mathrm{~d} m}$?

Comput. deriv. (ii) Reduced functional

Reduced functional:

$$
R(m) \equiv J(u(m), m)
$$

Taking the derivative of with respect to m yields:

$$
\frac{\mathrm{d} R}{\mathrm{~d} m}=\frac{\mathrm{d} J}{\mathrm{~d} m}=\frac{\partial J}{\partial u} \frac{\mathrm{~d} u}{\mathrm{~d} m}+\frac{\partial J}{\partial m} .
$$

Computing $\frac{\partial J}{\partial u}$ and $\frac{\partial J}{\partial m}$ is straight-forward, but how handle $\frac{\mathrm{d} u}{\mathrm{~d} m}$?

Comput. deriv. (ii) Reduced functional

Reduced functional:

$$
R(m) \equiv J(u(m), m)
$$

Taking the derivative of with respect to m yields:

$$
\frac{\mathrm{d} R}{\mathrm{~d} m}=\frac{\mathrm{d} J}{\mathrm{~d} m}=\frac{\partial J}{\partial u} \frac{\mathrm{~d} u}{\mathrm{~d} m}+\frac{\partial J}{\partial m}
$$

Computing $\frac{\partial J}{\partial u}$ and $\frac{\partial J}{\partial m}$ is straight-forward, but how handle $\frac{\mathrm{d} u}{\mathrm{~d} m}$?

Comput. deriv. (iii) Computing $\frac{\mathrm{d} u}{\mathrm{~d} m}$

Taking the derivative of $F(u, m)=0$ with respect to m yields:

$$
\frac{\mathrm{d} F}{\mathrm{~d} m}=\frac{\partial F}{\partial u} \frac{\mathrm{~d} u}{\mathrm{~d} m}+\frac{\partial F}{\partial m}=0
$$

Hence:

Final formula for functional derivative

Comput. deriv. (iii) Computing $\frac{\mathrm{d} u}{\mathrm{~d} m}$

Taking the derivative of $F(u, m)=0$ with respect to m yields:

$$
\frac{\mathrm{d} F}{\mathrm{~d} m}=\frac{\partial F}{\partial u} \frac{\mathrm{~d} u}{\mathrm{~d} m}+\frac{\partial F}{\partial m}=0
$$

Hence:

$$
\frac{\mathrm{d} u}{\mathrm{~d} m}=-\left(\frac{\partial F}{\partial u}\right)^{-1} \frac{\partial F}{\partial m}
$$

Final formula for functional derivative

Comput. deriv. (iii) Computing $\frac{\mathrm{d} u}{\mathrm{~d} m}$

Taking the derivative of $F(u, m)=0$ with respect to m yields:

$$
\frac{\mathrm{d} F}{\mathrm{~d} m}=\frac{\partial F}{\partial u} \frac{\mathrm{~d} u}{\mathrm{~d} m}+\frac{\partial F}{\partial m}=0
$$

Hence:

$$
\frac{\mathrm{d} u}{\mathrm{~d} m}=-\left(\frac{\partial F}{\partial u}\right)^{-1} \frac{\partial F}{\partial m}
$$

Final formula for functional derivative

$$
\frac{\mathrm{d} J}{\mathrm{~d} m}=-\overbrace{\frac{\partial J}{\partial u} \underbrace{\left(\frac{\partial F}{\partial u}\right)^{-1}}_{\text {tangent linear PDE }} \frac{\partial F}{\partial m}}^{\text {adjoint PDE }}+\frac{\partial J}{\partial m},
$$

Dimensions of a finite dimensional example

The tangent linear solution is a matrix of dimension $|u| \times|m|$ and requires the solution of m linear systems. The adjoint solution is a vector of dimension $|u|$ and requires the solution of one linear systems.

Adjoint approach

(1) Solve the adjoint equation for λ

$$
\frac{\partial F^{*}}{\partial u} \lambda=-\frac{\partial J^{*}}{\partial u}
$$

(2) Compute

$$
\frac{\mathrm{d} J}{\mathrm{~d} m}=\lambda^{*} \frac{\partial F}{\partial m}+\frac{\partial J}{\partial m} .
$$

The computational expensive part is (1). It requires solving the (linear) adjoint PDE, and its cost is independent of the choice of parameter m.

