FEniCS Course

Lecture 8. From sensitivities to optimisation

Contributors
Simon Funke

fenics
prouect

What is PDE-constrained optimisation?

Optimisation problems where at least one constrained is a partial differential equation

Applications

- Data assimilation.

Example: Weather modelling.

- Shape and topology optimisation.

Example: Optimal shape of an aerfoil.

- Parameter estimation.
- Optimal control.

What is PDE-constrained optimisation?

Optimisation problems where at least one constrained is a partial differential equation

Applications

- Data assimilation. Example: Weather modelling.
- Shape and topology optimisation. Example: Optimal shape of an aerfoil.
- Parameter estimation.
- Optimal control.
- ...

Hello World of PDE-constrained optimisation!

We will solve the optimal control of the Poisson equation:

$$
\min _{u, m} \frac{1}{2} \int_{\Omega}\left\|u-u_{d}\right\|^{2} \mathrm{~d} x+\frac{\alpha}{2} \int_{\Omega}\|m\|^{2} \mathrm{~d} x
$$

subject to

$$
\begin{array}{rc}
-\Delta u=m \quad & \text { in } \Omega \\
u=u_{0} & \text { on } \partial \Omega
\end{array}
$$

- This problem can be physically interpreted as: Find the heating/cooling term m for which u best approximates the desired heat distribution u_{d}.
- The second term in the objective functional, known as Thikhonov regularisation, ensures existence and uniqueness for $\alpha>0$.

Hello World of PDE-constrained optimisation!

We will solve the optimal control of the Poisson equation:

$$
\min _{u, m} \frac{1}{2} \int_{\Omega}\left\|u-u_{d}\right\|^{2} \mathrm{~d} x+\frac{\alpha}{2} \int_{\Omega}\|m\|^{2} \mathrm{~d} x
$$

subject to

$$
\begin{array}{rc}
-\Delta u=m \quad & \text { in } \Omega \\
u=u_{0} & \text { on } \partial \Omega
\end{array}
$$

- This problem can be physically interpreted as: Find the heating/cooling term m for which u best approximates the desired heat distribution u_{d}.
- The second term in the objective functional, known as Thikhonov regularisation, ensures existence and uniqueness for $\alpha>0$.

The canconical abstract form

$$
\begin{gathered}
\min _{u, m} J(u, m) \\
\text { subject to: } \\
F(u, m)=0
\end{gathered}
$$

with

- the objective functional J.
- the parameter m.
- the PDE operator F with solution u, parametrised by m.

The reduced problem

$$
\min _{m} \tilde{J}(m)=J(u(m), m)
$$

with

- the reduced functional \tilde{J}.
- the parameter m.

How do we solve this problem?

- Gradient descent.
- Newton method.
- Quasi-Newton methods.

The reduced problem

$$
\min _{m} \tilde{J}(m)=J(u(m), m)
$$

with

- the reduced functional \tilde{J}.
- the parameter m.

How do we solve this problem?

- Gradient descent.
- Newton method.
- Quasi-Newton methods.

Gradient descent

Algorithm

(1) Choose initial parameter value m^{0} and $\gamma>0$.
(2) For $i=0,1, \ldots$:

- $m^{i+1}=m^{i}-\gamma \nabla J\left(m^{i}\right)$

Features

+ Easy to implement.

- Slow convergence.

Newton method

Optimisation problem: $\min _{m} \tilde{J}(m)$.
Optimality condition:

$$
\begin{equation*}
\nabla \tilde{J}(m)=0 . \tag{1}
\end{equation*}
$$

Newton method applied to (1):
(1) Choose initial parameter value m^{0}.
(2) For $i=0,1$,

- $H(J) \delta m=-\nabla J\left(m^{i}\right)$, where H denotes the Hessian.
- $m^{i+1}=m^{i}+\delta m$

Features

+ Fast (locally quadratic) convergence.
- Requires iteratively solving a linear system with the Hessian, which might require many Hessian action computations.
- Hescian might not be positive definite, resulting in an update δm which is not a descent direction.

Newton method

Optimisation problem: $\min _{m} \tilde{J}(m)$.
Optimality condition:

$$
\begin{equation*}
\nabla \tilde{J}(m)=0 . \tag{1}
\end{equation*}
$$

Newton method applied to (1):
(1) Choose initial parameter value m^{0}.
(0) For $i=0,1$.

- $H(J) \delta m=-\nabla J\left(m^{i}\right)$, where H denotes the Hessian.
- $m^{i+1}=m^{i}+\delta m$

Features

+ Fast (locally quadratic) convergence.
- Requires iteratively solving a linear system with the Hessian, which might require many Hessian action computations.
Hessian might not be positive definite, resulting in an update δm which is not a descent direction.

Newton method

Optimisation problem: $\min _{m} \tilde{J}(m)$.
Optimality condition:

$$
\begin{equation*}
\nabla \tilde{J}(m)=0 . \tag{1}
\end{equation*}
$$

Newton method applied to (1):
(1) Choose initial parameter value m^{0}.
(2) For $i=0,1, \ldots$:

- $H(J) \delta m=-\nabla J\left(m^{i}\right)$, where H denotes the Hessian.
- $m^{i+1}=m^{i}+\delta m$

Features

+ Fast (locally quadratic) convergence.
- Requires iteratively solving a linear system with the Hessian, which might require many Hessian
action computations.

Newton method

Optimisation problem: $\min _{m} \tilde{J}(m)$.
Optimality condition:

$$
\begin{equation*}
\nabla \tilde{J}(m)=0 . \tag{1}
\end{equation*}
$$

Newton method applied to (1):
(1) Choose initial parameter value m^{0}.
(2) For $i=0,1, \ldots$:

- $H(J) \delta m=-\nabla J\left(m^{i}\right)$, where H denotes the Hessian.
- $m^{i+1}=m^{i}+\delta m$

Features

+ Fast (locally quadratic) convergence.
- Requires iteratively solving a linear system with the Hessian, which might require many Hessian action computations.
- Hessian might not be positive definite, resulting in an update δm which is not a descent direction.

Quasi-Newton methods

Like Newton method, but use approximate, low-rank Hessian approximation using gradient information only. A common approximation method is $B F G S$.

Features

Quasi-Newton methods

Like Newton method, but use approximate, low-rank Hessian approximation using gradient information only. A common approximation method is $B F G S$.

Features

+ Robust: Hessian approximation is always positive definite.
+ Cheap: No Hessian computation required, only gradient computations.
- Only superlinear convergence rate.

Solving the optimal Poisson problem

```
from dolfin import *
from dolfin_adjoint import *
# Solve Poisson problem
# ...
J = Functional(inner(s, s)*dx)
m = SteadyParameter(f)
rf = ReducedFunctional(J, m)
m_opt = minimize(rf, method="L-BFGS-B", tol=1e-2)
```

- You can call print_optimization_methods() to list all available methods.
- Use maximize if you want to solve a maximisation problem.

Solving the optimal Poisson problem

```
from dolfin import *
from dolfin_adjoint import *
# Solve Poisson problem
# ...
J = Functional(inner(s, s)*dx)
m = SteadyParameter(f)
rf = ReducedFunctional(J, m)
m_opt = minimize(rf, method="L-BFGS-B", tol=1e-2)
```


Tipps

- You can call print_optimization_methods() to list all available methods.
- Use maximize if you want to solve a maximisation problem.

Bound constraints

Sometimes it is usefull to specify lower and upper bounds for parameters:

$$
\begin{equation*}
l_{b} \leq m \leq u_{b} . \tag{2}
\end{equation*}
$$

Example:

```
lb = interpolate(0, V)
ub = interpolate(Expression("x[0]"), V)
m_opt = minimize(rf, method="L-BFGS-B",
    bounds=[lb, ub])
```

Note: Not all optimisation algorithms support bound constraints.

Inequality constraints

Sometimes it is usefull to specify (in-)equality constraints on the parameters:

$$
\begin{equation*}
g(m) \leq 0 \tag{3}
\end{equation*}
$$

You can do that by overloading the InequalityConstraint class.
For more information visit the Example section on dolfin-adjoint.org.

The FEniCS challenge!

(1) Solve the "Hello world" PDE-constrained optimisation problem on the unit square with $u_{d}(x, y)=\sin (\pi x) \sin (\pi y)$, homogenous boundary conditions and $\alpha=10^{-6}$.
(2) Compute the difference between optimised heat profile and u_{d} before and after the optimisation.
(3) Use the optimisation algorithms SLSQP, Newton-CG and L-BFGS-B and compare them.
(4) What happens if you increase α ?

