FEniCS Course

Lecture 8: From sensitivities to optimisation

Contributors Simon Funke

What is PDE-constrained optimisation?

Optimisation problems where at least one constrained is a partial differential equation

Applications

- Data assimilation. Example: Weather modelling.
- Shape and topology optimisation. *Example*: Optimal shape of an aerfoil.
- Parameter estimation.
- Optimal control.
- ...

What is PDE-constrained optimisation?

Optimisation problems where at least one constrained is a partial differential equation

Applications

- Data assimilation. *Example*: Weather modelling.
- Shape and topology optimisation. *Example*: Optimal shape of an aerfoil.
- Parameter estimation.
- Optimal control.
- ...

Hello World of PDE-constrained optimisation!

We will solve the optimal control of the Poisson equation:

$$\min_{u,m} \frac{1}{2} \int_{\Omega} \|u - u_d\|^2 \, \mathrm{d}x + \frac{\alpha}{2} \int_{\Omega} \|m\|^2 \, \mathrm{d}x$$
subject to
$$-\Delta u = m \quad \text{in } \Omega$$

$$u = u_0 \quad \text{on } \partial\Omega$$

- This problem can be physically interpreted as: Find the heating/cooling term m for which u best approximates the desired heat distribution u_d .
- The second term in the objective functional, known as Thikhonov regularisation, ensures existence and uniqueness for $\alpha > 0$.

Hello World of PDE-constrained optimisation!

We will solve the optimal control of the Poisson equation:

$$\min_{u,m} \frac{1}{2} \int_{\Omega} \|u - u_d\|^2 \, \mathrm{d}x + \frac{\alpha}{2} \int_{\Omega} \|m\|^2 \, \mathrm{d}x$$

subject to
$$-\Delta u = m \quad \text{in } \Omega$$
$$u = u_0 \quad \text{on } \partial\Omega$$

- This problem can be physically interpreted as: Find the heating/cooling term m for which u best approximates the desired heat distribution u_d .
- The second term in the objective functional, known as Thikhonov regularisation, ensures existence and uniqueness for $\alpha > 0$.

The canconical abstract form

$$\begin{split} \min_{u,m} J(u,m) \\ \text{subject to:} \\ F(u,m) &= 0, \end{split}$$

with

- the objective functional J.
- the parameter m.
- the PDE operator F with solution u, parametrised by m.

The reduced problem

$$\min_{m} \tilde{J}(m) = J(u(m), m)$$

with

- the reduced functional \tilde{J} .
- the parameter m.

How do we solve this problem?

- Gradient descent.
- Newton method.
- Quasi-Newton methods.

The reduced problem

$$\min_{m} \tilde{J}(m) = J(u(m), m)$$

with

- the reduced functional \tilde{J} .
- the parameter m.

How do we solve this problem?

- Gradient descent.
- Newton method.
- Quasi-Newton methods.

Gradient descent

Algorithm

(1) Choose initial parameter value m^0 and $\gamma > 0$.

2 For
$$i = 0, 1, \ldots$$
:

•
$$m^{i+1} = m^i - \gamma \nabla J(m^i)$$

- + Easy to implement.
 - Slow convergence.

Optimisation problem: $\min_m \tilde{J}(m)$.

Optimality condition:

$$\nabla \tilde{J}(m) = 0. \tag{1}$$

Newton method applied to (1):

1 Choose initial parameter value m^0 .

2 For
$$i = 0, 1, \ldots$$
:

• $H(J)\delta m = -\nabla J(m^i)$, where H denotes the Hessian.

•
$$m^{i+1} = m^i + \delta m$$

- + Fast (locally quadratic) convergence.
 - Requires iteratively solving a linear system with the Hessian, which might require many Hessian action computations.
 - Hessian might not be positive definite, resulting in an update δm which is not a descent direction.

Optimisation problem: $\min_m \tilde{J}(m)$. Optimality condition:

$$\nabla \tilde{J}(m) = 0. \tag{1}$$

Newton method applied to (1):

- (1) Choose initial parameter value m^0 .
- **2** For $i = 0, 1, \ldots$:
 - $H(J)\delta m = -\nabla J(m^i)$, where H denotes the Hessian.

•
$$m^{i+1} = m^i + \delta m$$

- + Fast (locally quadratic) convergence.
 - Requires iteratively solving a linear system with the Hessian, which might require many Hessian action computations.
 - Hessian might not be positive definite, resulting in an update δm which is not a descent direction.

Optimisation problem: $\min_m \tilde{J}(m)$. Optimality condition:

$$\nabla \tilde{J}(m) = 0. \tag{1}$$

Newton method applied to (1):

1 Choose initial parameter value m^0 .

2 For
$$i = 0, 1, \ldots$$
:

• $H(J)\delta m = -\nabla J(m^i)$, where H denotes the Hessian.

•
$$m^{i+1} = m^i + \delta m$$

- + Fast (locally quadratic) convergence.
 - Requires iteratively solving a linear system with the Hessian, which might require many Hessian action computations.
 - Hessian might not be positive definite, resulting in an update δm which is not a descent direction.

Optimisation problem: $\min_m \tilde{J}(m)$. Optimality condition:

$$\nabla \tilde{J}(m) = 0. \tag{1}$$

Newton method applied to (1):

1 Choose initial parameter value m^0 .

2 For
$$i = 0, 1, \ldots$$
:

• $H(J)\delta m = -\nabla J(m^i)$, where H denotes the Hessian.

•
$$m^{i+1} = m^i + \delta m$$

- + Fast (locally quadratic) convergence.
- Requires iteratively solving a linear system with the Hessian, which might require many Hessian action computations.
- Hessian might not be positive definite, resulting in an update δm which is not a descent direction.

Quasi-Newton methods

Like Newton method, but use approximate, low-rank Hessian approximation using gradient information only. A common approximation method is *BFGS*.

- + Robust: Hessian approximation is always positive definite.
- + Cheap: No Hessian computation required, only gradient computations.
- Only superlinear convergence rate.

Quasi-Newton methods

Like Newton method, but use approximate, low-rank Hessian approximation using gradient information only. A common approximation method is *BFGS*.

- + Robust: Hessian approximation is always positive definite.
- + Cheap: No Hessian computation required, only gradient computations.
- Only superlinear convergence rate.

Solving the optimal Poisson problem

```
from dolfin import *
from dolfin_adjoint import *
# Solve Poisson problem
# ...
J = Functional(inner(s, s)*dx)
m = SteadyParameter(f)
rf = ReducedFunctional(J, m)
m_opt = minimize(rf, method="L-BFGS-B", tol=1e-2)
```

\mathbf{Tipps}

- You can call **print_optimization_methods**() to list all available methods.
- Use **maximize** if you want to solve a maximisation problem.

Solving the optimal Poisson problem

```
from dolfin import *
from dolfin_adjoint import *
# Solve Poisson problem
# ...
J = Functional(inner(s, s)*dx)
m = SteadyParameter(f)
rf = ReducedFunctional(J, m)
m_opt = minimize(rf, method="L-BFGS-B", tol=1e-2)
```

Tipps

- You can call **print_optimization_methods()** to list all available methods.
- Use **maximize** if you want to solve a maximisation problem.

Bound constraints

Sometimes it is usefull to specify lower and upper bounds for parameters:

$$l_b \le m \le u_b. \tag{2}$$

Example:

Note: Not all optimisation algorithms support bound constraints.

Inequality constraints

Sometimes it is usefull to specify (in-)equality constraints on the parameters:

$$g(m) \le 0. \tag{3}$$

You can do that by overloading the **InequalityConstraint** class.

For more information visit the *Example* section on dolfin-adjoint.org.

The FEniCS challenge!

- **1** Solve the "Hello world" PDE-constrained optimisation problem on the unit square with $u_d(x, y) = \sin(\pi x) \sin(\pi y)$, homogenous boundary conditions and $\alpha = 10^{-6}$.
- **2** Compute the difference between optimised heat profile and u_d before and after the optimisation.
- **3** Use the optimisation algorithms SLSQP, Newton-CG and L-BFGS-B and compare them.
- **4** What happens if you increase α ?