FEniCS Course

Lecture 7\% Introduetion to dolfin-adjoint

Contributors
Simon Funke
Patrick Farrell

FEnics
prouect

What is dolfin-adjoint?

Dolfin-adjoint is FEniCS extoension for: solving adjoint and tangent linear equations; generalised stability analysis;
PDE-constrained optimisation.

Main features

- Automated derivation of first and second order adjoint and tangent linear models.
- Discretly consistent derivatives.
- Parallel support and near optimal performance.
- Interface to optimisation algorithms for PDE-constrained optimisation.
- Documentation and examples on dolfin-adjoint.org.

What has dolfin-adjoint been used for?

Layout optimisation of tidal turbines

- Up to 400 tidal turbines in one farm.
- What are the optimal locations to maximise power production?

What has dolfin-adjoint been used for?

Layout optimisation of tidal turbines

What has dolfin-adjoint been used for?

Layout optimisation of tidal turbines

```
from dolfin import *
from dolfin_adjoint import *
# FEniCS model
# ...
J = Functional(turbines*inner(u, u)**(3/2)*dx*dt)
m = Parameter(turbine_positions)
Jhat = ReducedFunctional(J, m)
maximize(Jhat)
```


What has dolfin-adjoint been used for?

Reconstruction of a tsunami wave

Is it possible to reconstruct a tsunami wave from images like this?
${ }^{1}$ Image: ASTER/NASA PIA06671

What has dolfin-adjoint been used for?

Reconstruction of a tsunami wave

Reconstruction of a tsunami wave

```
from dolfin import *
from dolfin_adjoint import *
# FEniCS model
# ...
J = Functional(observation_error ** 2*dx * dt)
m = Parameter(input_wave)
Jhat = ReducedFunctional(J, m)
minimize(Jhat)
```


Other applications

Dolfin-adjoint has been applied to lots of other cases, and works for many PDEs:

Some PDEs we have adjoined

- Burgers
- Navier-Stokes
- Stokes + mantle rheology
- Stokes + ice rheology
- Saint Venant + wetting/drying
- Cahn-Hilliard
- Gray-Scott
- Shallow ice
- Blatter-Pattyn
- Quasi-geostrophic
- Viscoelasticity
- Gross-Pitaevskii
- Yamabe
- Image registration
- Bidomain
- ...

Example

Compute the sensitivity of

$$
J(u)=\int_{\Omega}\left\|u-u_{d}\right\|^{2} \mathrm{~d} x
$$

with known u_{d} and the Poisson equation:

$$
\begin{aligned}
-\nu \Delta u=f & \text { in } \Omega \\
u=0 & \text { on } \partial \Omega .
\end{aligned}
$$

with respect to f and ν.

Poisson solver in FEniCS

An implementation of the Poisson's equation might look like this:

```
from dolfin import *
mesh = UnitSquareMesh(50, 50)
V = FunctionSpace(mesh, "CG", 1)
# Define Functions
u = TrialFunction(V)
v = TestFunction(V)
s = Function(V)
f = interpolate(Constant(1), V)
nu = Constant(1)
# Define variational forms
a = nu*inner(grad(u), grad(v))*dx
L = f*v*dx
# Solve problem
bcs = DirichletBC(V, 0.0, "on_boundary")
solve(a == L, s, bcs)
```


Dolfin-adjoint (i): Annotation

The first change necessary to adjoin this code is to import the dolin-adjoint module after loading dolfin:

```
from dolfin import *
from dolfin_adjoint import *
```

With this, dolfin-adjoint will record each step of the model, building an annotation. The annotation is used to symbolically manipulate the recorded equations to derive the tangent linear and adjoint models.
In this particular example, the solve function method will be recorded.

Dolfin-adjoint (ii): Objective functional

Next, we implement the objective functional, the square of the norm of u

$$
J(u)=\int_{\Omega}\left\|u-u_{d}\right\|^{2} \mathrm{~d} x
$$

or in code

```
#
J = Functional(inner(s-ud, s-ud)*dx)
```


Dolfin-adjoint (ii): Parameter

Next we need to decide which parameter we are interested in. Here, we would like to investigate the sensitivity with respect to the source term f, hence we use:

```
m = SteadyParameter(f)
```

Other Parameters are availabe. The most common are:

- SteadyParameter: For steady state problems.
- InitialConditionParameter: For the initial condition of time-dependent problems.
- ScalarParameter: For Constant parameters.

Dolfin-adjoint (iii): Computing gradients

Now, we can compute the gradient with:

```
dJdm = compute_gradient(J, m, project=True)
```

Dolfin-adjoint derives and solves the adjoint equations for us and returns the gradient.

Note
If you call compute_gradient more than once, you need to pass forget=False as a parameter. Otherwise you get an error: Need a value for u_1:0:0:Forward, but don't have one recorded.

Computational cost
Computing the gradient requires one adjoint solve.

Dolfin-adjoint (iii): Computing gradients

Now, we can compute the gradient with:

```
dJdm = compute_gradient(J, m, project=True)
```

Dolfin-adjoint derives and solves the adjoint equations for us and returns the gradient.

Note

If you call compute_gradient more than once, you need to pass forget=False as a parameter. Otherwise you get an error: Need a value for u_1:0:0:Forward, but don't have one recorded.
\square
Computing the gradient requires one adjoint solve.

Dolfin-adjoint (iii): Computing gradients

Now, we can compute the gradient with:

```
dJdm = compute_gradient(J, m, project=True)
```

Dolfin-adjoint derives and solves the adjoint equations for us and returns the gradient.

Note

If you call compute_gradient more than once, you need to pass forget=False as a parameter. Otherwise you get an error: Need a value for u_1:0:0:Forward, but don't have one recorded.

Computational cost

Computing the gradient requires one adjoint solve.

Dolfin-adjoint (iii): Computing Hessians

Dolfin-adjoint can also compute the second derivatives:

```
hess = hessian(J, m)
direction = interpolate(Constant(1), V)
plot(hess(direction))
```

Computational cost
Comnuting the directional second derivative requires one tangent linear and two adjoint solves.

Dolfin-adjoint (iii): Computing Hessians

Dolfin-adjoint can also compute the second derivatives:

```
hess = hessian(J, m)
direction = interpolate(Constant(1), V)
plot(hess(direction))
```


Computational cost

Computing the directional second derivative requires one tangent linear and two adjoint solves.

Dolfin-adjoint (iii): Time-dependent problems

For time-depedent problems, you need to tell dolfin-adjoint when a new time-step starts:

```
# Set the initial time
adjointer.time.start(t)
while (t <= end):
    # . . .
    # Update the time
    adj_inc_timestep(time=t, finished=t>end)
```


Time integration

Dolfin-adjoint adds the time measure $\mathbf{d t}$ which you can use to integrate a functional over time. Examples:

```
J1 = Functional(inner(s, s)*dx*dt)
J2 = Functional(inner(s, s)*dx*dt[FINISH_TIME])
J3 = Functional(inner(s, s)*dx*dt[0.5])
J4 = Functional(inner(s, s)*dx*dt[0.5:])
```


Verification

How can you check that the gradient is correct?
Taylor expansion of the reduced functional \tilde{J} in a perturbation δm yields:

$$
\begin{equation*}
|\tilde{J}(m+\epsilon \delta m)-J(m)| \rightarrow 0 \quad \text { at } \mathcal{O}(\epsilon) \tag{1}
\end{equation*}
$$

but

$$
\begin{equation*}
|\tilde{J}(m+\epsilon \delta m)-J(m)-\epsilon \nabla J \cdot \delta m| \rightarrow 0 \quad \text { at } \mathcal{O}\left(\epsilon^{2}\right) \tag{2}
\end{equation*}
$$

Tayor test
Choose $m, \delta m$ and determine the convergence rate by reducing ϵ. If the convergence order with gradient is ≈ 2, your gradient is correct. The function help(taylor_test) implements the Taylor test for you.

Verification

How can you check that the gradient is correct?
Taylor expansion of the reduced functional \tilde{J} in a perturbation δm yields:

$$
\begin{equation*}
|\tilde{J}(m+\epsilon \delta m)-J(m)| \rightarrow 0 \quad \text { at } \mathcal{O}(\epsilon) \tag{1}
\end{equation*}
$$

but

$$
\begin{equation*}
|\tilde{J}(m+\epsilon \delta m)-J(m)-\epsilon \nabla J \cdot \delta m| \rightarrow 0 \quad \text { at } \mathcal{O}\left(\epsilon^{2}\right) \tag{2}
\end{equation*}
$$

Tayor test

Choose $m, \delta m$ and determine the convergence rate by reducing ϵ. If the convergence order with gradient is ≈ 2, your gradient is correct.
The function help(taylor_test) implements the Taylor test for you.

The FEniCS challenge!

(1) Compute the gradient and Hessian of the Poisson example with respect to ν and f. Do you get the same gradient as yesterday? Hint: you can pass a list of parameters to compute_gradient.
(2) Measure the computation time for the forward, gradient and Hessian computation. Hint: Use help(Timer). What do you observe?
(3) Solve the Burger's equation

$$
\frac{\partial u}{\partial t}-\nu \Delta u+u \cdot \nabla u=0
$$

and compute the gradient of $J(u)=\int_{\Omega}\|u\| \mathrm{d} x \mathrm{~d} t$ with respect to the initial condition. Time the forward and gradient computation. Which one is faster. Why?

