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What is dolfin-adjoint?

Dolfin-adjoint is FEniCS extoension for: solving adjoint and
tangent linear equations; generalised stability analysis;
PDE-constrained optimisation.

Main features

• Automated derivation of first and second order adjoint and
tangent linear models.

• Discretly consistent derivatives.

• Parallel support and near optimal performance.

• Interface to optimisation algorithms for PDE-constrained
optimisation.

• Documentation and examples on dolfin-adjoint.org.
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dolfin-adjoint.org


What has dolfin-adjoint been used for?
Layout optimisation of tidal turbines

• Up to 400 tidal turbines in one farm.

• What are the optimal locations to maximise power
production?
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What has dolfin-adjoint been used for?
Layout optimisation of tidal turbines

from dolfin import *

from dolfin_adjoint import *

# FEniCS model

# ...

J = Functional(turbines*inner(u, u)**(3/2)*dx*dt)

m = Parameter(turbine_positions)

Jhat = ReducedFunctional(J, m)

maximize(Jhat)
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What has dolfin-adjoint been used for?
Reconstruction of a tsunami wave

1

Is it possible to reconstruct a tsunami wave from images like
this?

1Image: ASTER/NASA PIA06671
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Reconstruction of a tsunami wave

from dolfin import *

from dolfin_adjoint import *

# FEniCS model

# ...

J = Functional(observation_error**2*dx*dt)

m = Parameter(input_wave)

Jhat = ReducedFunctional(J, m)

minimize(Jhat)
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Other applications

Dolfin-adjoint has been applied to lots of other cases, and
works for many PDEs:

Some PDEs we have adjoined

• Burgers

• Navier-Stokes

• Stokes + mantle rheology

• Stokes + ice rheology

• Saint Venant +
wetting/drying

• Cahn-Hilliard

• Gray-Scott

• Shallow ice

• Blatter-Pattyn

• Quasi-geostrophic

• Viscoelasticity

• Gross-Pitaevskii

• Yamabe

• Image registration

• Bidomain

• . . .
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Example

Compute the sensitivity of

J(u) =

∫
Ω
‖u− ud‖2 dx

with known ud and the Poisson equation:

−ν∆u = f in Ω

u = 0 on ∂Ω.

with respect to f and ν.
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Poisson solver in FEniCS
An implementation of the Poisson’s equation might look like
this:

from dolfin import *

mesh = UnitSquareMesh(50, 50)

V = FunctionSpace(mesh , "CG", 1)

# Define Functions

u = TrialFunction(V)

v = TestFunction(V)

s = Function(V)

f = interpolate(Constant(1), V)

nu = Constant(1)

# Define variational forms

a = nu*inner(grad(u), grad(v))*dx

L = f*v*dx

# Solve problem

bcs = DirichletBC(V, 0.0, "on_boundary")

solve(a == L, s, bcs) 11 / 19



Dolfin-adjoint (i): Annotation

The first change necessary to adjoin this code is to import the
dolin-adjoint module after loading dolfin:

from dolfin import *

from dolfin_adjoint import *

With this, dolfin-adjoint will record each step of the model,
building an annotation. The annotation is used to symbolically
manipulate the recorded equations to derive the tangent linear
and adjoint models.
In this particular example, the solve function method will be
recorded.
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Dolfin-adjoint (ii): Objective functional

Next, we implement the objective functional, the square of the
norm of u

J(u) =

∫
Ω
‖u− ud‖2 dx

or in code

# ...

J = Functional(inner(s-ud , s-ud)*dx)
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Dolfin-adjoint (ii): Parameter

Next we need to decide which parameter we are interested in.
Here, we would like to investigate the sensitivity with respect to
the source term f , hence we use:

m = SteadyParameter(f)

Other Parameters are availabe. The most common are:

• SteadyParameter: For steady state problems.

• InitialConditionParameter: For the initial condition of
time-dependent problems.

• ScalarParameter: For Constant parameters.
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Dolfin-adjoint (iii): Computing gradients

Now, we can compute the gradient with:

dJdm = compute_gradient(J, m, project=True)

Dolfin-adjoint derives and solves the adjoint equations for us
and returns the gradient.

Note
If you call compute gradient more than once, you need to
pass forget=False as a parameter. Otherwise you get an error:
Need a value for u 1:0:0:Forward, but don’t have one recorded.

Computational cost

Computing the gradient requires one adjoint solve.
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Dolfin-adjoint (iii): Computing Hessians

Dolfin-adjoint can also compute the second derivatives:

hess = hessian(J, m)

direction = interpolate(Constant(1), V)

plot(hess(direction))

Computational cost

Computing the directional second derivative requires one
tangent linear and two adjoint solves.
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Dolfin-adjoint (iii): Time-dependent problems
For time-depedent problems, you need to tell dolfin-adjoint
when a new time-step starts:

# Set the initial time

adjointer.time.start(t)

while (t <= end):

# ...

# Update the time

adj_inc_timestep(time=t, finished=t>end)

Time integration

Dolfin-adjoint adds the time measure dt which you can use to
integrate a functional over time. Examples:

J1 = Functional(inner(s, s)*dx*dt)

J2 = Functional(inner(s, s)*dx*dt[FINISH_TIME])

J3 = Functional(inner(s, s)*dx*dt[0.5])

J4 = Functional(inner(s, s)*dx*dt[0.5:])
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Verification

How can you check that the gradient is correct?

Taylor expansion of the reduced functional J̃ in a perturbation
δm yields:

|J̃(m+ εδm)− J(m)| → 0 at O(ε) (1)

but

|J̃(m+ εδm)− J(m)− ε∇J · δm| → 0 at O(ε2) (2)

Tayor test

Choose m, δm and determine the convergence rate by reducing
ε. If the convergence order with gradient is ≈ 2, your gradient is
correct.
The function help(taylor test) implements the Taylor test for
you.
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The FEniCS challenge!

1 Compute the gradient and Hessian of the Poisson example
with respect to ν and f . Do you get the same gradient as
yesterday? Hint: you can pass a list of parameters to
compute gradient.

2 Measure the computation time for the forward, gradient
and Hessian computation. Hint: Use help(Timer). What
do you observe?

3 Solve the Burger’s equation

∂u

∂t
− ν∆u+ u · ∇u = 0,

and compute the gradient of J(u) =
∫

Ω ‖u‖ dx dt with
respect to the initial condition. Time the forward and
gradient computation. Which one is faster. Why?
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