
FEniCS Course
Lecture 6: Computing sensitivities

Contributors
Simon Funke

1 / 12

Computing sensitivities

So far we focused on solving PDEs.
But often we are also interested the sensitivity with respect to
certain parameters, for example

• initial conditions,

• forcing terms,

• unkown coefficients.

2 / 12

Computing sensitivities

So far we focused on solving PDEs.
But often we are also interested the sensitivity with respect to
certain parameters, for example

• initial conditions,

• forcing terms,

• unkown coefficients.

Forward PDE, functional, parameter

Adjoint PDETangent linear PDE Second order adjoint PDE

Derivatives Error estimation

Sensitivity analysis Generalised stability analysisOptimisation

Uncertainty quantification

Continuation analysis

Data assimilation

Optimisation under uncertainty

Bifurcation analysis

Goal-based adaptivity

2 / 12

Computing sensitivities

So far we focused on solving PDEs.
But often we are also interested the sensitivity with respect to
certain parameters, for example

• initial conditions,

• forcing terms,

• unkown coefficients.

Forward PDE, functional, parameter

Adjoint PDETangent linear PDE Second order adjoint PDE

Derivatives Error estimation

Sensitivity analysis Generalised stability analysisOptimisation

Uncertainty quantification

Continuation analysis

Data assimilation

Optimisation under uncertainty

Bifurcation analysis

Goal-based adaptivity

2 / 12

Example

Consider the Poisson’s equation

−∆u = m in Ω,

u = u0 on ∂Ω,

together with the objective functional

J(u) =
1

2

∫
Ω
‖u− ud‖2 dx,

where ud is a known function.

Goal
Compute the sensitivity of J with respect to the parameter m:
dJ/dm.

3 / 12

Comput. deriv. (i) General formulation

Given

• Parameter m,

• PDE F (u,m) = 0 with solution u.

• Objective functional J(u,m)→ R,

Goal
Compute dJ/dm.

Reduced functional
Consider u as an implicit function of m by solving the PDE.
With that we define the reduced functional J̃ :

J̃(m) = J(u(m),m)

4 / 12

Comput. deriv. (i) General formulation

Given

• Parameter m,

• PDE F (u,m) = 0 with solution u.

• Objective functional J(u,m)→ R,

Goal
Compute dJ/dm.

Reduced functional
Consider u as an implicit function of m by solving the PDE.
With that we define the reduced functional J̃ :

J̃(m) = J(u(m),m)

4 / 12

Comput. deriv. (i) General formulation

Given

• Parameter m,

• PDE F (u,m) = 0 with solution u.

• Objective functional J(u,m)→ R,

Goal
Compute dJ/dm.

Reduced functional
Consider u as an implicit function of m by solving the PDE.
With that we define the reduced functional J̃ :

J̃(m) = J(u(m),m)

4 / 12

Comput. deriv. (ii) Reduced functional

Reduced functional:

J̃(m) ≡ J(u(m),m).

Taking the derivative of with respect to m yields:

dJ̃

dm
=

dJ

dm
=
∂J

∂u

du

dm
+
∂J

∂m
.

Computing ∂J
∂u and ∂J

∂m is straight-forward, but how handle du
dm?

5 / 12

Comput. deriv. (ii) Reduced functional

Reduced functional:

J̃(m) ≡ J(u(m),m).

Taking the derivative of with respect to m yields:

dJ̃

dm
=

dJ

dm
=
∂J

∂u

du

dm
+
∂J

∂m
.

Computing ∂J
∂u and ∂J

∂m is straight-forward, but how handle du
dm?

5 / 12

Comput. deriv. (ii) Reduced functional

Reduced functional:

J̃(m) ≡ J(u(m),m).

Taking the derivative of with respect to m yields:

dJ̃

dm
=

dJ

dm
=
∂J

∂u

du

dm
+
∂J

∂m
.

Computing ∂J
∂u and ∂J

∂m is straight-forward, but how handle du
dm?

5 / 12

Comput. deriv. (iii) Computing du
dm

Taking the derivative of F (u,m) = 0 with respect to m yields:

dF

dm
=
∂F

∂u

du

dm
+
∂F

∂m
= 0

Hence:

du

dm
= −

(
∂F

∂u

)−1 ∂F

∂m

Final formula for functional derivative

dJ

dm
= −

adjoint PDE︷ ︸︸ ︷
∂J

∂u

(
∂F

∂u

)−1 ∂F

∂m︸ ︷︷ ︸
tangent linear PDE

+
∂J

∂m
,

6 / 12

Comput. deriv. (iii) Computing du
dm

Taking the derivative of F (u,m) = 0 with respect to m yields:

dF

dm
=
∂F

∂u

du

dm
+
∂F

∂m
= 0

Hence:

du

dm
= −

(
∂F

∂u

)−1 ∂F

∂m

Final formula for functional derivative

dJ

dm
= −

adjoint PDE︷ ︸︸ ︷
∂J

∂u

(
∂F

∂u

)−1 ∂F

∂m︸ ︷︷ ︸
tangent linear PDE

+
∂J

∂m
,

6 / 12

Comput. deriv. (iii) Computing du
dm

Taking the derivative of F (u,m) = 0 with respect to m yields:

dF

dm
=
∂F

∂u

du

dm
+
∂F

∂m
= 0

Hence:

du

dm
= −

(
∂F

∂u

)−1 ∂F

∂m

Final formula for functional derivative

dJ

dm
= −

adjoint PDE︷ ︸︸ ︷
∂J

∂u

(
∂F

∂u

)−1 ∂F

∂m︸ ︷︷ ︸
tangent linear PDE

+
∂J

∂m
,

6 / 12

Dimensions of a finite dimensional example

dJ

dm
=

discretised adjoint PDE︷ ︸︸ ︷
−∂J

∂u ×
(
∂F
∂u

)−1 × ∂F
∂m

︸ ︷︷ ︸
discretised tangent linear PDE

+ ∂J
∂m

The tangent linear solution is a matrix of dimension |u| × |m|
and requires the solution of m linear systems. The adjoint
solution is a vector of dimension |u| and requires the solution of
one linear systems.

7 / 12

Adjoint approach

1 Solve the adjoint equation for λ

∂F

∂u

∗
λ = −∂J

∗

∂u
.

2 Compute
dJ

dm
= λ∗

∂F

∂m
+
∂J

∂m
.

The computational expensive part is (1). It requires solving the
(linear) adjoint PDE, and its cost is independent of the choice
of parameter m.

8 / 12

Static example

Poisson problem

Consider

J(u) =
1

2

∫
Ω
‖u− ud‖2 dx

and
F (u,m) = −∆u−m = 0.

bcs = DirichletBC(V, 0.0, "on_boundary")

a = inner(grad(u), grad(v))*dx

L = m*v*dx

solve(a == L, s, bcs)

print "J=", assemble(0.5*inner(u-ud , u-ud)*dx)

9 / 12

Static example

Adjoint system

∂F

∂u

∗
λ = −∂J

∗

∂u
⇒ −∆λ = −(u− ud) (adjoint PDE)

a = inner(grad(u), grad(v))*dx

L = -(s-ud)*v*dx

solve(a == L, lmbd , bcs)

10 / 12

Static example

Derivative computation

dJ

dm
= λ∗

∂F

∂m
+
∂J

∂m
= −λ∗

dJdm = -lmbd

plot(dJdm , interactive=True)

11 / 12

The FEniCS challenge!

Solve the partial differential equation

−∆u = m

with homogeneous Dirichlet boundary conditions on the unit
square for m(x, y) = 1.
Then solve the adjoint system for the functional

J(u) =

∫
Ω
‖u− ud‖2 dx,

with ud(x, y) = sin(πx). Finally use the adjoint solution to
compute the derivative of J with respect to m.
Can you interpret the result?

12 / 12

