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Computing sensitivities

So far we focused on solving PDEs.
But often we are also interested the sensitivity with respect to
certain parameters, for example

• initial conditions,

• forcing terms,

• unkown coefficients.
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Example

Consider the Poisson’s equation

−∆u = m in Ω,

u = u0 on ∂Ω,

together with the objective functional

J(u) =
1

2

∫
Ω
‖u− ud‖2 dx,

where ud is a known function.

Goal
Compute the sensitivity of J with respect to the parameter m:
dJ/dm.
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Comput. deriv. (i) General formulation

Given

• Parameter m,

• PDE F (u,m) = 0 with solution u.

• Objective functional J(u,m)→ R,

Goal
Compute dJ/dm.

Reduced functional
Consider u as an implicit function of m by solving the PDE.
With that we define the reduced functional J̃ :

J̃(m) = J(u(m),m)
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Comput. deriv. (ii) Reduced functional

Reduced functional:

J̃(m) ≡ J(u(m),m).

Taking the derivative of with respect to m yields:

dJ̃

dm
=

dJ

dm
=
∂J

∂u

du

dm
+
∂J

∂m
.

Computing ∂J
∂u and ∂J

∂m is straight-forward, but how handle du
dm?
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Comput. deriv. (iii) Computing du
dm

Taking the derivative of F (u,m) = 0 with respect to m yields:

dF

dm
=
∂F

∂u

du

dm
+
∂F

∂m
= 0

Hence:

du

dm
= −

(
∂F

∂u

)−1 ∂F

∂m

Final formula for functional derivative

dJ

dm
= −

adjoint PDE︷ ︸︸ ︷
∂J

∂u

(
∂F

∂u

)−1 ∂F

∂m︸ ︷︷ ︸
tangent linear PDE

+
∂J

∂m
,

6 / 12



Comput. deriv. (iii) Computing du
dm

Taking the derivative of F (u,m) = 0 with respect to m yields:

dF

dm
=
∂F

∂u

du

dm
+
∂F

∂m
= 0

Hence:

du

dm
= −

(
∂F

∂u

)−1 ∂F

∂m

Final formula for functional derivative

dJ

dm
= −

adjoint PDE︷ ︸︸ ︷
∂J

∂u

(
∂F

∂u

)−1 ∂F

∂m︸ ︷︷ ︸
tangent linear PDE

+
∂J

∂m
,

6 / 12



Comput. deriv. (iii) Computing du
dm

Taking the derivative of F (u,m) = 0 with respect to m yields:

dF

dm
=
∂F

∂u

du

dm
+
∂F

∂m
= 0

Hence:

du

dm
= −

(
∂F

∂u

)−1 ∂F

∂m

Final formula for functional derivative

dJ

dm
= −

adjoint PDE︷ ︸︸ ︷
∂J

∂u

(
∂F

∂u

)−1 ∂F

∂m︸ ︷︷ ︸
tangent linear PDE

+
∂J

∂m
,

6 / 12



Dimensions of a finite dimensional example

dJ

dm
=

discretised adjoint PDE︷ ︸︸ ︷
−∂J

∂u ×
(
∂F
∂u

)−1 × ∂F
∂m

︸ ︷︷ ︸
discretised tangent linear PDE

+ ∂J
∂m

The tangent linear solution is a matrix of dimension |u| × |m|
and requires the solution of m linear systems. The adjoint
solution is a vector of dimension |u| and requires the solution of
one linear systems.
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Adjoint approach

1 Solve the adjoint equation for λ

∂F

∂u

∗
λ = −∂J

∗

∂u
.

2 Compute
dJ

dm
= λ∗

∂F

∂m
+
∂J

∂m
.

The computational expensive part is (1). It requires solving the
(linear) adjoint PDE, and its cost is independent of the choice
of parameter m.
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Static example

Poisson problem

Consider

J(u) =
1

2

∫
Ω
‖u− ud‖2 dx

and
F (u,m) = −∆u−m = 0.

bcs = DirichletBC(V, 0.0, "on_boundary")

a = inner(grad(u), grad(v))*dx

L = m*v*dx

solve(a == L, s, bcs)

print "J=", assemble(0.5*inner(u-ud , u-ud)*dx)
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Static example

Adjoint system

∂F

∂u

∗
λ = −∂J

∗

∂u
⇒ −∆λ = −(u− ud) (adjoint PDE)

a = inner(grad(u), grad(v))*dx

L = -(s-ud)*v*dx

solve(a == L, lmbd , bcs)
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Static example

Derivative computation

dJ

dm
= λ∗

∂F

∂m
+
∂J

∂m
= −λ∗

dJdm = -lmbd

plot(dJdm , interactive=True)
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The FEniCS challenge!

Solve the partial differential equation

−∆u = m

with homogeneous Dirichlet boundary conditions on the unit
square for m(x, y) = 1.
Then solve the adjoint system for the functional

J(u) =

∫
Ω
‖u− ud‖2 dx,

with ud(x, y) = sin(πx). Finally use the adjoint solution to
compute the derivative of J with respect to m.
Can you interpret the result?
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