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What is FEM?

The finite element method is a framework and a recipe for
discretization of differential equations

• Ordinary differential equations

• Partial differential equations

• Integral equations

• A recipe for discretization of PDE

• PDE → Ax = b

• Different bases, stabilization, error control, adaptivity
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The FEM cookbook

Au = f

a(u, v) = L(v)

a(uh, v) = L(v)

AU = b

Partial differential equation

Continuous variational problem

Discrete variational problem

System of discrete equations

Multip
ly

by v

Take V
h
⊂ V

Let u
h

=
∑

j
Ujφ

j

(i)

(ii)

(iii)

(iv)
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The PDE (i)

Consider Poisson’s equation, the Hello World of partial
differential equations:

−∆u = f in Ω

u = u0 on ∂Ω

Poisson’s equation arises in numerous applications:

• heat conduction, electrostatics, diffusion of substances,

twisting of elastic rods, inviscid fluid flow, water waves,

magnetostatics, . . .

• as part of numerical splitting strategies for more

complicated systems of PDEs, in particular the

Navier–Stokes equations
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From PDE (i) to variational problem (ii)

The simple recipe is: multiply the PDE by a test function v and
integrate over Ω:

−
∫

Ω
(∆u)v dx =

∫
Ω
fv dx

Then integrate by parts and set v = 0 on the Dirichlet
boundary:

−
∫

Ω
(∆u)v dx =

∫
Ω
∇u · ∇v dx−

∫
∂Ω

∂u

∂n
v ds︸ ︷︷ ︸

=0

We find that: ∫
Ω
∇u · ∇v dx =

∫
Ω
fv dx
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The variational problem (ii)

Find u ∈ V such that∫
Ω
∇u · ∇v dx =

∫
Ω
fv dx

for all v ∈ V̂

The trial space V and the test space V̂ are (here) given by

V = {v ∈ H1(Ω) : v = u0 on ∂Ω}
V̂ = {v ∈ H1(Ω) : v = 0 on ∂Ω}
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From continuous (ii) to discrete (iii) problem

We approximate the continuous variational problem with a
discrete variational problem posed on finite dimensional
subspaces of V and V̂ :

Vh ⊂ V
V̂h ⊂ V̂

Find uh ∈ Vh ⊂ V such that∫
Ω
∇uh · ∇v dx =

∫
Ω
fv dx

for all v ∈ V̂h ⊂ V̂
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From discrete variational problem (iii) to

discrete system of equations (iv)

Choose a basis for the discrete function space:

Vh = span {φj}Nj=1

Make an ansatz for the discrete solution:

uh =

N∑
j=1

Ujφj

Test against the basis functions:∫
Ω
∇(

N∑
j=1

Ujφj︸ ︷︷ ︸
uh

) · ∇φi dx =

∫
Ω
fφi dx
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From discrete variational problem (iii) to

discrete system of equations (iv), contd.

Rearrange to get:

N∑
j=1

Uj

∫
Ω
∇φj · ∇φi dx︸ ︷︷ ︸

Aij

=

∫
Ω
fφi dx︸ ︷︷ ︸
bi

A linear system of equations:

AU = b

where

Aij =

∫
Ω
∇φj · ∇φi dx (1)

bi =

∫
Ω
fφi dx (2)
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The canonical abstract problem

(i) Partial differential equation:

Au = f in Ω

(ii) Continuous variational problem: find u ∈ V such that

a(u, v) = L(v) for all v ∈ V̂

(iii) Discrete variational problem: find uh ∈ Vh ⊂ V such that

a(uh, v) = L(v) for all v ∈ V̂h

(iv) Discrete system of equations for uh =
∑N

j=1 Ujφj :

AU = b

Aij = a(φj , φi)

bi = L(φi)
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Important topics

• How to choose Vh?

• How to compute A and b

• How to solve AU = b?

• How large is the error e = u− uh?

• Extensions to nonlinear problems
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How to choose Vh
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Finite element function spaces

u

uh

t

13 / 34



The finite element definition (Ciarlet 1975)

A finite element is a triple (T,V,L), where

• the domain T is a bounded, closed subset of Rd (for

d = 1, 2, 3, . . . ) with nonempty interior and piecewise

smooth boundary

• the space V = V(T ) is a finite dimensional function space

on T of dimension n

• the set of degrees of freedom (nodes) L = {`1, `2, . . . , `n} is

a basis for the dual space V ′; that is, the space of bounded

linear functionals on V
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The finite element definition (Ciarlet 1975)

T V L

v(x̄)

∫
T v(x)w(x) dx

v(x̄) · n
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The linear Lagrange element: (T,V ,L)

• T is a line, triangle or tetrahedron

• V is the first-degree polynomials on T

• L is point evaluation at the vertices
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The linear Lagrange element: L
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The linear Lagrange element: Vh

T = {T}

T

uh(x, y)
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The quadratic Lagrange element: (T,V ,L)

• T is a line, triangle or tetrahedron

• V is the second-degree polynomials on T

• L is point evaluation at the vertices and edge midpoints
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The quadratic Lagrange element: L

20 / 34



The quadratic Lagrange element: Vh
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Families of elements
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Families of elements
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Computing the sparse matrix A
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Naive assembly algorithm

A = 0

for i = 1, . . . , N

for j = 1, . . . , N

Aij = a(φj , φi)

end for

end for
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The element matrix

The global matrix A is defined by

Aij = a(φj , φi)

The element matrix AT is defined by

AT,ij = aT (φTj , φ
T
i )
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The local-to-global mapping

The global matrix ιT is defined by

I = ιT (i)

where I is the global index corresponding to the local index i
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The assembly algorithm

A = 0

for T ∈ T

Compute the element matrix AT

Compute the local-to-global mapping ιT

Add AT to A according to ιT

end for
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Adding the element matrix AT

ι2T (1)

1

2

3

1 2 3

AT,32

ι2T (2) ι2T (3)

ι1T (1)

ι1T (2)

ι1T (3)
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Solving AU = b
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Direct methods

• Gaussian elimination

• Requires ∼ 2
3N

3 operations

• LU factorization: A = LU

• Solve requires ∼ 2
3N

3 operations

• Reuse L and U for repeated solves

• Cholesky factorization: A = LL>

• Works if A is symmetric and positive definite

• Solve requires ∼ 1
3N

3 operations

• Reuse L for repeated solves
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Iterative methods

Krylov subspace methods

• GMRES (Generalized Minimal RESidual method)

• CG (Conjugate Gradient method)

• Works if A is symmetric and positive definite

• BiCGSTAB, MINRES, TFQMR, . . .

Multigrid methods

• GMG (Geometric MultiGrid)

• AMG (Algebraic MultiGrid)

Preconditioners

• ILU, ICC, SOR, AMG, Jacobi, block-Jacobi, additive

Schwarz, . . .
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Which method should I use?

Rules of thumb

• Direct methods for small systems

• Iterative methods for large systems

• Break-even at ca 100–1000 degrees of freedom

• Use a symmetric method for a symmetric system

• Cholesky factorization (direct)

• CG (iterative)

• Use a multigrid preconditioner for Poisson-like systems

• GMRES with ILU preconditioning is a good default choice
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Current timings (2013–08–09)
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