FEniCS Course

Lecture 0. Introduetion to FEM

Contributors
Anders Logg

FEnics
 prouect

What is FEM?

The finite element method is a framework and a recipe for discretization of differential equations

- Ordinary differential equations
- Partial differential equations
- Integral equations
- A recipe for discretization of PDE
- $\mathrm{PDE} \rightarrow A x=b$
- Different bases, stabilization, error control, adaptivity

The FEM cookbook

(i)

The PDE (i)

Consider Poisson's equation, the Hello World of partial differential equations:

$$
\begin{aligned}
-\Delta u & =f & & \text { in } \Omega \\
u & =u_{0} & & \text { on } \partial \Omega
\end{aligned}
$$

Poisson's equation arises in numerous applications:

- heat conduction, electrostatics, diffusion of substances, twisting of elastic rods, inviscid fluid flow, water waves, magnetostatics, ...
- as part of numerical splitting strategies for more complicated systems of PDEs, in particular the Navier-Stokes equations

From PDE (i) to variational problem (ii)

The simple recipe is: multiply the PDE by a test function v and integrate over Ω :

$$
-\int_{\Omega}(\Delta u) v \mathrm{~d} x=\int_{\Omega} f v \mathrm{~d} x
$$

Then integrate by parts and set $v=0$ on the Dirichlet boundary:

$$
-\int_{\Omega}(\Delta u) v \mathrm{~d} x=\int_{\Omega} \nabla u \cdot \nabla v \mathrm{~d} x-\underbrace{\int_{\partial \Omega} \frac{\partial u}{\partial n} v \mathrm{~d} s}_{=0}
$$

We find that:

$$
\int_{\Omega} \nabla u \cdot \nabla v \mathrm{~d} x=\int_{\Omega} f v \mathrm{~d} x
$$

The variational problem (ii)

Find $u \in V$ such that

$$
\int_{\Omega} \nabla u \cdot \nabla v \mathrm{~d} x=\int_{\Omega} f v \mathrm{~d} x
$$

for all $v \in \hat{V}$
The trial space V and the test space \hat{V} are (here) given by

$$
\begin{aligned}
V & =\left\{v \in H^{1}(\Omega): v=u_{0} \text { on } \partial \Omega\right\} \\
\hat{V} & =\left\{v \in H^{1}(\Omega): v=0 \text { on } \partial \Omega\right\}
\end{aligned}
$$

From continuous (ii) to discrete (iii) problem

We approximate the continuous variational problem with a discrete variational problem posed on finite dimensional subspaces of V and \hat{V} :

$$
\begin{aligned}
& V_{h} \subset V \\
& \hat{V}_{h} \subset \hat{V}
\end{aligned}
$$

Find $u_{h} \in V_{h} \subset V$ such that

$$
\int_{\Omega} \nabla u_{h} \cdot \nabla v \mathrm{~d} x=\int_{\Omega} f v \mathrm{~d} x
$$

for all $v \in \hat{V}_{h} \subset \hat{V}$

From discrete variational problem (iii) to

discrete system of equations (iv)

Choose a basis for the discrete function space:

$$
V_{h}=\operatorname{span}\left\{\phi_{j}\right\}_{j=1}^{N}
$$

Make an ansatz for the discrete solution:

$$
u_{h}=\sum_{j=1}^{N} U_{j} \phi_{j}
$$

Test against the basis functions:

$$
\int_{\Omega} \nabla(\underbrace{\sum_{j=1}^{N} U_{j} \phi_{j}}_{u_{h}}) \cdot \nabla \phi_{i} \mathrm{~d} x=\int_{\Omega} f \phi_{i} \mathrm{~d} x
$$

From discrete variational problem (iii) to

discrete system of equations (iv), contd.
Rearrange to get:

$$
\sum_{j=1}^{N} U_{j} \underbrace{\int_{\Omega} \nabla \phi_{j} \cdot \nabla \phi_{i} \mathrm{~d} x}_{A_{i j}}=\underbrace{\int_{\Omega} f \phi_{i} \mathrm{~d} x}_{b_{i}}
$$

A linear system of equations:

$$
A U=b
$$

where

$$
\begin{align*}
A_{i j} & =\int_{\Omega} \nabla \phi_{j} \cdot \nabla \phi_{i} \mathrm{~d} x \tag{1}\\
b_{i} & =\int_{\Omega} f \phi_{i} \mathrm{~d} x \tag{2}
\end{align*}
$$

The canonical abstract problem

(i) Partial differential equation:

$$
\mathcal{A} u=f \quad \text { in } \Omega
$$

(ii) Continuous variational problem: find $u \in V$ such that

$$
a(u, v)=L(v) \quad \text { for all } v \in \hat{V}
$$

(iii) Discrete variational problem: find $u_{h} \in V_{h} \subset V$ such that

$$
a\left(u_{h}, v\right)=L(v) \quad \text { for all } v \in \hat{V}_{h}
$$

(iv) Discrete system of equations for $u_{h}=\sum_{j=1}^{N} U_{j} \phi_{j}$:

$$
\begin{aligned}
A U & =b \\
A_{i j} & =a\left(\phi_{j}, \phi_{i}\right) \\
b_{i} & =L\left(\phi_{i}\right)
\end{aligned}
$$

Important topics

- How to choose V_{h} ?
- How to compute A and b
- How to solve $A U=b$?
- How large is the error $e=u-u_{h}$?
- Extensions to nonlinear problems

How to choose V_{h}

Finite element function spaces

$\longrightarrow u$
$\underline{u_{h}}$

The finite element definition (Ciarlet 1975)

A finite element is a triple $(T, \mathcal{V}, \mathcal{L})$, where

- the domain T is a bounded, closed subset of \mathbb{R}^{d} (for
$d=1,2,3, \ldots)$ with nonempty interior and piecewise smooth boundary
- the space $\mathcal{V}=\mathcal{V}(T)$ is a finite dimensional function space on T of dimension n
- the set of degrees of freedom (nodes) $\mathcal{L}=\left\{\ell_{1}, \ell_{2}, \ldots, \ell_{n}\right\}$ is a basis for the dual space \mathcal{V}^{\prime}; that is, the space of bounded linear functionals on \mathcal{V}

The finite element definition (Ciarlet 1975)

T
\mathcal{V}
\mathcal{L}

$$
\begin{aligned}
& v(\bar{x}) \\
& v(\bar{x}) \cdot n \\
& \int_{T} v(x) w(x) \mathrm{d} x
\end{aligned}
$$

The linear Lagrange element: $(T, \mathcal{V}, \mathcal{L})$

- T is a line, triangle or tetrahedron
- \mathcal{V} is the first-degree polynomials on T
- \mathcal{L} is point evaluation at the vertices

The linear Lagrange element: \mathcal{L}

The linear Lagrange element: V_{h}

The quadratic Lagrange element: $(T, \mathcal{V}, \mathcal{L})$

- T is a line, triangle or tetrahedron
- \mathcal{V} is the second-degree polynomials on T
- \mathcal{L} is point evaluation at the vertices and edge midpoints

The quadratic Lagrange element: \mathcal{L}

The quadratic Lagrange element: V_{h}

Families of elements

Families of elements

Computing the sparse matrix A

Naive assembly algorithm

$$
\begin{aligned}
& A=0 \\
& \text { for } i=1, \ldots, N \\
& \text { for } j=1, \ldots, N \\
& \quad A_{i j}=a\left(\phi_{j}, \phi_{i}\right) \\
& \text { end for }
\end{aligned}
$$

end for

The element matrix

The global matrix A is defined by

$$
A_{i j}=a\left(\phi_{j}, \phi_{i}\right)
$$

The element matrix A_{T} is defined by

$$
A_{T, i j}=a_{T}\left(\phi_{j}^{T}, \phi_{i}^{T}\right)
$$

The local-to-global mapping

The global matrix ι_{T} is defined by

$$
I=\iota_{T}(i)
$$

where I is the global index corresponding to the local index i

The assembly algorithm

$A=0$
for $T \in \mathcal{T}$

Compute the element matrix A_{T}

Compute the local-to-global mapping ι_{T}

Add A_{T} to A according to ι_{T} end for

Adding the element matrix A_{T}

Solving $A U=b$

Direct methods

- Gaussian elimination
- Requires $\sim \frac{2}{3} N^{3}$ operations
- LU factorization: $A=L U$
- Solve requires $\sim \frac{2}{3} N^{3}$ operations
- Reuse L and U for repeated solves
- Cholesky factorization: $A=L L^{\top}$
- Works if A is symmetric and positive definite
- Solve requires $\sim \frac{1}{3} N^{3}$ operations
- Reuse L for repeated solves

Iterative methods

Krylov subspace methods

- GMRES (Generalized Minimal RESidual method)
- CG (Conjugate Gradient method)
- Works if A is symmetric and positive definite
- BiCGSTAB, MINRES, TFQMR, ...

Multigrid methods

- GMG (Geometric MultiGrid)
- AMG (Algebraic MultiGrid)

Preconditioners

- ILU, ICC, SOR, AMG, Jacobi, block-Jacobi, additive Schwarz, ...

Which method should I use?

Rules of thumb

- Direct methods for small systems
- Iterative methods for large systems
- Break-even at ca 100-1000 degrees of freedom
- Use a symmetric method for a symmetric system
- Cholesky factorization (direct)
- CG (iterative)
- Use a multigrid preconditioner for Poisson-like systems
- GMRES with ILU preconditioning is a good default choice

Current timings (2013-08-09)

