FEniCS Course

Lecture 8: The Stokes problem

Contributors André Massing

The Stokes equations

$$\begin{aligned} -\Delta u + \nabla p &= f & \text{in } \Omega & \text{Momentum equation} \\ \nabla \cdot u &= 0 & \text{in } \Omega & \text{Continuity equation} \\ u &= g_D & \text{on } \partial \Omega_D \\ \frac{\partial u}{\partial n} - pn &= g_N & \text{on } \partial \Omega_N \end{aligned}$$

- u is the fluid velocity and p is the pressure
- f is a given body force per unit volume
- $g_{\rm D}$ is a given boundary flow
- $g_{\scriptscriptstyle\rm N}$ is a given function for the natural boundary condition

Variational problem

Multiply the momentum equation by a test function v and integrate by parts:

$$\int_{\Omega} \nabla u : \nabla v \, \mathrm{d}x - \int_{\Omega} p \nabla \cdot v \, \mathrm{d}x = \int_{\Omega} f \cdot v \, \mathrm{d}x + \int_{\partial \Omega_N} g_N \cdot v \, \mathrm{d}s$$

Short-hand notation:

$$\underbrace{\langle \nabla u, \nabla v \rangle}_{a(u,v)} \underbrace{-\langle p, \nabla \cdot v \rangle}_{b(v,p)} = \underbrace{\langle f, v \rangle + \langle g_N, v \rangle_{\partial \Omega_N}}_{L(v)}$$

Multiply the continuity equation by a test function q:

$$\underbrace{\pm \langle \nabla \cdot u, q \rangle}_{b(u,q)} = 0$$

Definition of $a(\cdot, \cdot)$ and $b(\cdot, \cdot)$ is meaningful if $u \in H^1(\Omega)$ and $p \in L^2(\Omega)$

Saddle point formulation for the Stokes problem

Stokes problem is an example for a saddle point problem: Find $(u,p) \in V \times Q$ such that for all $(v,q) \in \widehat{V} \times \widehat{Q}$

$$a(u, v) + b(v, p) = L(v)$$

$$b(u, q) = 0$$

Sum up: A(u, p; v, q) := a(u, v) + b(v, p) + b(u, q) = L(v)Mixed spaces:

$$V = [H^1_{g_D,\Gamma_D}(\Omega)]^d \qquad \qquad \widehat{V} = [H^1_{0,\Gamma_D}(\Omega)]^d$$
$$Q = L^2(\Omega) \qquad \qquad \widehat{Q} = L^2(\Omega)$$

The inf-sup condition

$$\inf_{q \in Q} \sup_{v \in V} \frac{b(v,q)}{\|v\|_V \|q\|_Q} \ge C$$

is crucial to show unique solvability of the saddle point problem.

Discrete variational problem

Find $(u_h, p_h) \in V_h \times Q_h$ such that for all $(v_h, q_h) \in \widehat{V_h} \times \widehat{Q_h}$

 $A_h(u_h, p_h; v_h, q_h) := a_h(u_h, v_h) + b_h(v_h, p_h) + b_h(u_h, q_h) = L_h(v_h)$

A stable mixed element $V_h \times Q_h \subset V \times Q$ should satisfy a uniform inf-sup condition

$$\inf_{q_h \in Q_h} \sup_{v_h \in V_h} \frac{b_h(v_h, q_h)}{\|v_h\|_V \|q_h\|_Q} \ge c_b$$

with c_b independent of the mesh $\mathcal{T}_h!$ \Rightarrow The right "mixture" of elements is critical for stability and convergence.

Spurious pressure modes

What can go wrong?

Spurious pressure modes occur if ker $B_h^T \not\subset \ker B^\top$.

Degeneration of the inf-sup constant: $c_b = c_b(h)$ and $c_b(h) \to 0, h \to 0$.

Exercise: Couette flow

Compute the finite element approximation for Couette flow on the unit square. Use the boundary data

$$u = 1$$
 on $y = 1$, $u = 0$ on $y = 0$, $g_N = 0$ on $x = 0$ or $x = 1$

Use $\mathbb{P}_1/\mathbb{P}_1$ and $\mathbb{P}_1/\mathbb{P}_0$ elements. The exact solution is given by

$$u = (y, 0), \qquad p = 0$$

What do you observe? Why?

Unstable and stable Stokes elements

Unstable elements

Taylor-Hood elements: $\mathbb{P}_{k+1}/\mathbb{P}_k$, $\mathbb{Q}_{k+1}/\mathbb{Q}_k$ for $k \ge 1$ Mini-element: $\mathbb{P}_1^b/\mathbb{P}_1$

Useful FEniCS tools (I)

Mixed elements:

```
V = VectorFunctionSpace(mesh, "CG",2)
Q = FunctionSpace(mesh, "CG",1)
W = V*Q
```

Defining functions, test and trial functions:

up = Function(W)
(u,p) = split(up)

Shortcut:

```
(u, p) = Functions(W)
# similar for test and trial functions
(u, p) = TrialFunctions(W)
(v, q) = TestFunctions(W)
```

Useful FEniCS tools (II)

Access subspaces:

W.sub(0) #corresponds to V
W.sub(1) #corresponds to Q

Splitting solution into components:

w = Function(W)
solve(a == L, w, bcs)
(u, p) = w.split()

Rectangle mesh:

mesh = Rectangle(0.0, 0.0, 5.0, 1.0, 50, 10)

h = CellSize(mesh)

Demo: Couette flow

Demo: Taylor–Hood elements

A stabilized $\mathbb{P}_1/\mathbb{P}_1$ method

Define the bilinear forms

$$\begin{aligned} a_h(u_h, v_h) &= (\nabla u_h, \nabla v_h) \\ b_h(v_h, q_h) &= -(\nabla \cdot v_h, q_h) \\ c_h(p_h, q_h) &= \sum_{T \in \mathcal{T}_h} \mu_T(\nabla p_h, \nabla q_h) \end{aligned}$$

and solve: find $(u_h, p_h) \in V_h \times Q_h$ such that $\forall (v_h, q_h) \in \widehat{V}_h \times \widehat{Q}_h$

$$A(u_h, p_h; v_h, q_h) := a(u_h, v_h) + b(v_h, p_h) + b(u_h, q_h) - c(p_h, q_h)$$

= $(f, v_h) - \sum_{T \in \mathcal{T}_h} \mu_T(f, \nabla q_h)$

Exercise: Implement this scheme for the Couette flow example using $\mu_T = \beta h_T^2$, $\beta = 0.2$.

Demo: Stabilized elements