FEniCS Course

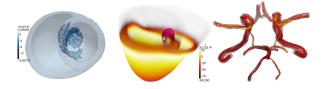
Overview

Lecturer
Marie E. Rognes
KAUST, Nov 4–6 2012

Course outline

L00 Introduction to FEM **L01** Introduction to FEniCS (Day 1) L02 Static linear PDEs (Day 1) L03 Static nonlinear PDEs (Day 2) L04 Time-dependent PDEs (Day 3) L05 Happy hacking: Tools, tips and coding practices **L06** Static hyperelasticity L07 Dynamic hyperelasticity L08 The Stokes problem L09 Incompressible Navier–Stokes L10 Discontinuous Galerkin methods for elliptic equations L11 A posteriori error estimates and adaptivity

Lectures can be downloaded from http://fenicsproject.org/pub/course/


The FEniCS Project is a collection of open-source software components aimed at the numerical solution of partial differential equations using finite element methods.

Key distinguishing features

- FEniCS (Python/C++) code is quick to write and easy to read.
- 'Any' finite element formulation of 'any' partial differential equation can be coded.
- Automated code generation is heavily used under the hood to create efficient, specialized, low-level code.
- Performance implicit problems with over 200M degrees of freedom have been solved in minutes.

FEniCS can be, and has been, used for a wide range of equations and applications

Reaction-diffusion equations; Stokes with or without nonlinear viscosity; compressible and incompressible Navier-Stokes; RANS turbulence models; shallow water equations; Bidomain equations; nonlinear and linear elasticity; nonlinear and linear viscoelasticity; Schrödinger; Biot's equations for porous media, fracture mechanics, electromagnetism, liquid crystals including liquid crystal elastomers, combustion, ... and coupled systems of the above, ...

for simulating blood flow, computing calcium release in cardic tissue, computing the cardiac potential in the heart, simulating mantle convection, simulating melting ice sheets, computing the optimal placement of tidal turbines, simulating and reconstructing tsunamis, simulating the flow of cerebrospinal fluid and the deformation of the spinal cord, simulting waveguides, ...

Sounds great, but how do I find my way through the jungle?

Three survival advices

Use the right Python tools

Explore the documentation

Ask, report and request

Our documentation includes a book, a collection of documented demo programs, and complete references for the FEniCS application programming interface (API). Note that the FEniCS API is documented separately for each FEniCS component. The most important interfaces are those of the C++Python problem solving environment DOLE/IN and the form language UFL.

(This page accesses the FEniCS 1.0.0 documentation. Not the version you are looking for? See all versions.)

The FEniCS Tutorial

A good starting point for new users is the FEnCS Tutorial. The tutorial will help you get quickly up and running with solving differential equations in FEniCS. The tutorial focuses exclusively on the FEniCS Python interface, since this is the simplest approach to exploring FEniCS for beginners.

The FEniCS Book

The FEMCS Book, Automated Solution of Differential Equations by the Finite Element Method, is a comprehensive (700 pages) book documenting the mathematical methodology behind the FEMCS Project and the software developed as part of the FEMCS Project. The FEMCS Tutorial is included as the opening chapter of the FEMCS Book.

The FEniCS Manual

The FEniCS Manual is a 200-page excerpt from the FEniCS Book, including the FEniCS Tutorial, an introduction to the finite element method and documentation of DOLFIN and UFL.

Demos

A simple way to build your first FEniCS application is to copy and modify one of the existing demos:

Documented DOLFIN demos (Python)

Documented DOLFIN demos (C++)

The demos are already installed on your system or can be found in the demo directory of the DOLEIN source tree

Quick Programmer's References

Some of the classes and functions in DOLFIN are more frequently used than others. To learn more about these, take a look at the

Basic classes and functions in DOLFIN (Python)

Basic classes and functions in DOLFIN (C++)

Complete Programmer's References

All classes and functions in DOLFIN (Python)

All classes and functions in DOLFIN (C++)

All classes and functions in UFL

Our documentation includes a book, a collection of documented demo programs, and complete references for the FEriCS application programming interface (API). Note that the FEriCS API is documented separately for each FEriCS component. The most important interfaces are those of the C++Python problem solving environment <u>POUFN</u> and the form language <u>UFL</u>.

(This page accesses the FEniCS 1.0.0 documentation. Not the version you are looking for? See all versions.)

The FEniCS Tutorial

A good starting point for new users is the FEn/CS Tutorial The tutorial will help you get quickly up and running with solving differential equations in FEn/CS. The tutorial focuses exclusively on the FEn/CS Python interface, since this is the simplest approach to exploring FEn/CS for beginners.

The FEniCS Book

The FENCS Book, Automated Solution of Differential Equations by the Finite Element Method is a comprehensive (700 pages) book documenting the mathematical methodology behind the FEnCS Project and the software developed as part of the FEnicS Project. The FEnicS Tutorial is included as the opening chapter of the FEnicS Book.

The FEniCS Manual

The FEniCS Manual is a 200-page excerpt from the FEniCS Book, including the FEniCS Tutorial, an introduction to the finite element method and documentation of DOLFIN and UFL.

Demos

A simple way to build your first FEniCS application is to copy and modify one of the existing demos:

Documented DOLFIN demos (Python)

Documented DOLFIN demos (C++)

The demos are already installed on your system or can be found in the demo directory of the DOLFIN source tree.

Quick Programmer's References

Some of the classes and functions in DOLFIN are more frequently used than others. To learn more about these, take a look at the

Basic classes and functions in DOLFIN (Python)

Basic classes and functions in DOLFIN (C++)

Complete Programmer's References

All classes and functions in DOLFIN (Python)

All classes and functions in DOLFIN (C++)

Our documentation includes a book, a collection of documented demo programs, and complete references for the FERICS application programming interface (API). Note that the FERICS API is documented separately for each FERICS component. The most important interfaces are those of the C++PV-thon problem solving environment <u>POUFIN</u> and the form language UFIL.

(This page accesses the FEniCS 1.0.0 documentation. Not the version you are looking for? See all versions.)

The FEniCS Tutorial

A good starting point for new users is the FEnCS Tutorial. The tutorial will help you get quickly up and running with solving differential equations in FEnCis The tutorial focuses exclusively on the FEnCS Python interface, since this is the simplest approach to exploring FEnCis for beginners.

The FEniCS Book

The FENCS Book, Automated Solution of Differential Equations by the Finite Element Method, is a comprehensive (700 pages) book documenting the mathematical methodology behind the FENCS Project and the software developed as part of the FENCS Project. The FENICS Tutorial is included as the opening chapter of the FENICS Book.

The FEniCS Manual

The FEniCS Manual is a 200-page excerpt from the FEniCS Book, including the FEniCS Tutorial, an introduction to the finite element method and documentation of DOLFIN and UFL.

Demos

A simple way to build your first FEniCS application is to copy and modify one of the existing demos:

Documented DOLFIN demos (Python)

Documented DOLFIN demos (C++)

The demos are already installed on your system or can be found in the demo directory of the DOLFIN source tree.

Quick Programmer's References

Some of the classes and functions in DOLFIN are more frequently used than others. To learn more about these, take a look at the

Basic classes and functions in DOLEIN (Python)

Basic classes and functions in DOLFIN (C++)

Complete Programmer's References

All classes and functions in DOLFIN (Python)

All classes and functions in DOLFIN (C++)
All classes and functions in UFL

Our documentation includes a book, a collection of documented demo programs, and complete references for the FEniCS application programming interface (API). Note that the FEniCS API is documented separately for each FEniCS component. The most important interfaces are those of the C++Python problem solving environment DOLE/IN and the form language UP.

(This page accesses the FEniCS 1.0.0 documentation. Not the version you are looking for? See all versions.)

The FEniCS Tutorial

A good starting point for new users is the FERICS Tutorial. The tutorial will help you get quickly up and running with solving differential equations in FERICS. The tutorial focuses exclusively on the FERICS Python interface, since this is the simplest approach to exploring FERICS for beginners.

The FEniCS Book

The FERICS Book, Automated Solution of Differential Equations by the Finite Element Method, is a comprehensive (700 pages) book documenting the mathematical methodology behind the FERICS Project and the software developed as part of the FERICS Project. The FERICS Tutorial is included as the opening chapter of the FERICS Book.

The FEniCS Manual

Demos

A simple way to build your first FEniCS application is to copy and modify one of the existing demos:

Documented DOLFIN demos (Python)

Documented DOLFIN demos (C++)

The demos are already installed on your system or can be found in the demo directory of the DOLFIN source tree.

Quick Programmer's References

Some of the classes and functions in DOLFIN are more frequently used than others. To learn more about these, take a look at the

Basic classes and functions in DOLFIN (Python)

Basic classes and functions in DOLFIN (C++)

Complete Programmer's References

All classes and functions in DOLFIN (Python)

All classes and functions in DOLFIN (C++)

Our documentation includes a book, a collection of documented demo programs, and complete references for the FEniCS application programming interface (API). Note that the FENICS API is documented separately for each FEniCS component. The most important interfaces are those of the C+H-Pfvton problem solving environment DOCE/IM and the form language UP.

(This page accesses the FEniCS 1.0.0 documentation. Not the version you are looking for? See all versions.)

The FEniCS Tutorial

A good starting point for new users is the FEnCS Tutorial. The tutorial will help you get quickly up and running with solving differential equations in FEniCS. The tutorial focuses exclusively on the FEniCS Python interface, since this is the simplest approach to exploring FEniCS for beginners.

The FEniCS Book

The FERICS Book, Automated Solution of Differential Equations by the Finite Element Method, is a comprehensive (700 pages) book documenting the mathematical methodology behind the FERICS Project and the software developed as part of the FERICS Project. The FERICS Tutorial is included as the opening chapter of the FERICS Book.

The FEniCS Manual

The FEniCS Manual is a 200-page excerpt from the FEniCS Book, including the FEniCS Tutorial, an introduction to the finite element method and documentation of DOLFIN and UFL.

Demos

A simple way to build your first FEniCS application is to copy and modify one of the existing demos:

Documented DOLFIN demos (Python)

Documented DOLFIN demos (C++)

The demos are already installed on your system or can be found in the demo directory of the DOLFIN source tree.

Quick Programmer's References

Some of the classes and functions in DOLFIN are more frequently used than others. To learn more about these, take a look at the

Basic classes and functions in DOLFIN (Python)

Basic classes and functions in DOLFIN (C++)

Complete Programmer's References

All classes and functions in DOLFIN (Python)

All classes and functions in UFL

All classes and functions in DOLFIN (C++)

Our documentation includes a book, a collection of documented demo programs, and complete references for the FEniCS application programming interface (API). Note that the FENICS API is documented separately for each FEniCS component. The most important interfaces are those of the C+HP/thon problem solving environment DOCE/IM and the form language UP.

(This page accesses the FEniCS 1.0.0 documentation. Not the version you are looking for? See all versions.)

The FEniCS Tutorial

A good starting point for new users is the FEnCS Tutorial. The tutorial will help you get quickly up and running with solving differential equations in FEniCS. The tutorial focuses exclusively on the FEniCS Python interface, since this is the simplest approach to exploring FEniCS for beginners.

The FEniCS Book

The FERICS Book, Automated Solution of Differential Equations by the Finite Element Method is a comprehensive (700 pages) book documenting the mathematical methodology behind the FERICS Project and the software developed as part of the FERICS Project. The FERICS Tutorial is included as the opening chapter of the FERICS Book.

The FEniCS Manual

The FEniCS Manual is a 200-page excerpt from the FEniCS Book, including the FEniCS Tutorial, an introduction to the finite element method and documentation of DOLFIN and UFL.

Demos

A simple way to build your first FEniCS application is to copy and modify one of the existing demos:

Documented DOLFIN demos (Python)

Documented DOLFIN demos (C++)

The demos are already installed on your system or can be found in the demo directory of the DOLEIN source tree

Quick Programmer's References

Some of the classes and functions in DOLFIN are more frequently used than others. To learn more about these, take a look at the

Basic classes and functions in DOLFIN (Python)

Basic classes and functions in DOLFIN (C++)

Complete Programmer's References

All classes and functions in DOLFIN (Python)

All classes and functions in DOLFIN (C++)
All classes and functions in UFL

Community help is centralized via launchpad

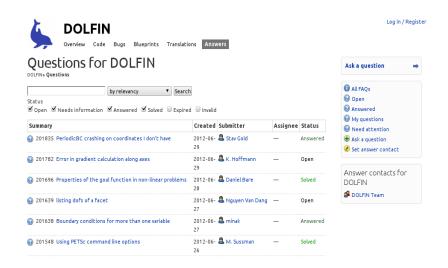
Overview of Launchpad pages

This page contains links to all FEniCS projects on Launchpad for convenience.

Meta components

FEniCS Apps	Get Answers	Report Bugs	(Join Team and) Email Support	Browse List Archives
FEniCS Project	Get Answers	Report Bugs	(Join Team and) Email Support	Browse List Archives

Core components


DOLFIN	Get Answers	Report Bugs	(Join Team and) Email Support	Browse List Archives
FFC	Get Answers	Report Bugs	(Join Team and) Email Support	Browse List Archives
FIAT	Get Answers	Report Bugs	(Join Team and) Email Support	Browse List Archives
Instant	Get Answers	Report Bugs	(Join Team and) Email Support	Browse List Archives
UFC	Get Answers	Report Bugs	(Join Team and) Email Support	Browse List Archives
UFL	Get Answers	Report Bugs	(Join Team and) Email Support	Browse List Archives

Additional components

	AScoT	Get Answers	Report Bugs	(Join Team and) Email Support	Browse List Archives
	Dorsal	Got Answers	Depart Burs	/ Join Team and\ Email Support	Browen Liet Archives

http://fenicsproject.org/support/launchpad_pages.html

Community help is centralized via launchpad

https://answers.launchpad.net/dolfin

Installation

Official packages for Debian and Ubuntu

Drag and drop installation on Mac OS X

Binary installer for Windows

Automated installation from source

http://fenicsproject.org/download/

Let's get started and remember:

- Lectures can be downloaded from http://fenicsproject.org/pub/course/lectures
- Data for exercises can be downloaded from http://fenicsproject.org/pub/course/data
- Solutions for exercises can be downloaded from http://fenicsproject.org/pub/course/src (Secret password needed!)