FEniCS Course

Lecture 9: Incompressible Navier-Stokes

Contributors
Anders Logg

FEnics
 DCOJECک

The incompressible Navier-Stokes equations

$$
\begin{aligned}
\rho(\dot{u}+u \cdot \nabla u)-\nabla \cdot \sigma(u, p) & =f & & \text { in } \Omega \times(0, T] \\
\nabla \cdot u & =0 & & \text { in } \Omega \times(0, T] \\
u & =g_{\mathrm{D}} & & \text { on } \Gamma_{\mathrm{D}} \times(0, T] \\
\sigma \cdot n & =g_{\mathrm{N}} & & \text { on } \Gamma_{\mathrm{N}} \times(0, T] \\
u(\cdot, 0) & =u_{0} & & \text { in } \Omega
\end{aligned}
$$

- u is the fluid velocity and p is the pressure
- ρ is the fluid density
- $\sigma(u, p)=2 \mu \epsilon(u)-p I$ is the Cauchy stress tensor
- $\epsilon(u)=\frac{1}{2}\left(\nabla u+(\nabla u)^{\top}\right)$ is the symmetric gradient
- f is a given body force per unit volume
- g_{D} is a given boundary displacement
- g_{N} is a given boundary traction
- u_{0} is a given initial velocity

Variational problem

Multiply the momentum equation by a test function v and integrate by parts:
$\int_{\Omega} \rho(\dot{u}+u \cdot \nabla u) \cdot v \mathrm{~d} x+\int_{\Omega} \sigma(u, p): \epsilon(v) \mathrm{d} x=\int_{\Omega} f \cdot v \mathrm{~d} x+\int_{\Gamma_{\mathrm{N}}} g_{\mathrm{N}} \cdot v \mathrm{~d} s$
Short-hand notation:

$$
\langle\rho \dot{u}, v\rangle+\langle\rho u \cdot \nabla u, v\rangle+\langle\sigma(u, p), \epsilon(v)\rangle=\langle f, v\rangle+\left\langle g_{\mathrm{N}}, v\right\rangle_{\Gamma_{\mathrm{N}}}
$$

Multiply the continuity equation by a test function q and sum up: find $(u, p) \in V$ such that
$\langle\rho \dot{u}, v\rangle+\langle\rho u \cdot \nabla u, v\rangle+\langle\sigma(u, p), \epsilon(v)\rangle+\langle\nabla \cdot u, q\rangle=\langle f, v\rangle+\left\langle g_{\mathrm{N}}, v\right\rangle_{\Gamma_{\mathrm{N}}}$ for all $(v, q) \in \hat{V}$

Discrete variational problem

Time-discretization leads to a saddle-point problem on each time step:

$$
\left[\begin{array}{cc}
M+\Delta t A+\Delta t N(U) & \Delta t B \\
\Delta t B^{\top} & 0
\end{array}\right]\left[\begin{array}{l}
U \\
P
\end{array}\right]=\left[\begin{array}{l}
b \\
0
\end{array}\right]
$$

- Efficient solution of the saddle-point problem relies on the efficiency of special-purpose preconditioners (Uzawa iteration, Schur complement preconditioners, ...)
- We will use another approach (simpler and often more efficient)

A splitting method

$\mathrm{cG}(1)$ / Crank-Nicolson approximation with explicit convection:

$$
\rho D_{t} u^{n}+\rho u^{n-1} \cdot \nabla u^{n-1}-\nabla \cdot \sigma\left(u^{n-1 / 2}, p^{n-1 / 2}\right)=f^{n-1 / 2}
$$

Compute the tentative velocity u^{\star} using the approximation

$$
\rho D_{t} u^{\star}+\rho u^{n-1} \cdot \nabla u^{n-1}-\nabla \cdot \sigma\left(u^{n-1 / 2}, p^{n-3 / 2}\right)=f^{n-1 / 2}
$$

Subtract:

$$
\rho\left(D_{t} u^{n}-D_{t} u^{\star}\right)-\nabla \cdot \sigma\left(0, p^{n-1 / 2}-p^{n-3 / 2}\right)=0
$$

Expand and rearrange:

$$
\rho\left(u^{n}-u^{\star}\right)+k_{n} \nabla\left(p^{n-1 / 2}-p^{n-3 / 2}\right)=0
$$

$D_{t} u=\left(u^{n}-u^{n-1}\right) / k_{n}$ and $k_{n}=t_{n}-t_{n-1}$

A splitting method (contd.)

We have found that:

$$
\rho\left(u^{n}-u^{\star}\right)+k_{n} \nabla\left(p^{n-1 / 2}-p^{n-3 / 2}\right)=0
$$

It follows that

$$
\begin{equation*}
\rho u^{n}=\rho u^{\star}-k_{n} \nabla\left(p^{n-1 / 2}-p^{n-3 / 2}\right) \tag{1}
\end{equation*}
$$

Take the divergence and set $\nabla \cdot u^{n}=0$:

$$
\begin{equation*}
-k_{n} \Delta p^{n-1 / 2}=-k_{n} \Delta p^{n-3 / 2}-\rho \nabla \cdot u^{\star} \tag{2}
\end{equation*}
$$

- Compute $p^{n-1 / 2}$ by solving the Poisson problem (2)
- Compute u^{n} by solving the projection problem (1)
- To consider: What about the boundary conditions for the

Poisson problem (2)?

Boundary conditions

- For outflow boundary conditions, corresponding to so-called "do-nothing" boundary conditions for the

Laplacian formulation, we take $\partial_{n} u=0$:

$$
\begin{aligned}
\sigma(u, p) \cdot n & =(2 \mu \epsilon(u)-p I) \cdot n=\mu \nabla u \cdot n+\mu(\nabla u)^{\top} \cdot n-p n \\
& =\mu(\nabla u)^{\top} \cdot n-p n \approx \mu\left(\nabla u^{n-1 / 2}\right)^{\top} \cdot n-p^{n-3 / 2} n
\end{aligned}
$$

- Boundary conditions for the pressure Poisson problem:

$$
\partial_{n} \dot{p}=0
$$

on the pressure Neumann boundary

Incremental pressure correction scheme (IPCS)

(1) Compute the tentative velocity u^{\star} by

$$
\begin{gathered}
\left\langle\rho D_{t}^{n} u^{\star}, v\right\rangle+\left\langle\rho u^{n-1} \cdot \nabla u^{n-1}, v\right\rangle+\left\langle\sigma\left(u^{n-\frac{1}{2}}, p^{n-3 / 2}\right), \epsilon(v)\right\rangle \\
-\left\langle\mu n \cdot\left(\nabla u^{n-\frac{1}{2}}\right)^{\top}, v\right\rangle_{\partial \Omega}+\left\langle p^{n-3 / 2} n, v\right\rangle_{\partial \Omega}=\left\langle f^{n-1 / 2}, v\right\rangle
\end{gathered}
$$

(2) Compute the corrected pressure $p^{n-1 / 2}$ by

$$
k_{n}\left\langle\nabla p^{n-1 / 2}, \nabla q\right\rangle=k_{n}\left\langle\nabla p^{n-3 / 2}, \nabla q\right\rangle-\left\langle\rho \nabla \cdot u^{\star}, q\right\rangle
$$

(3) Compute the corrected velocity u^{n} by

$$
\left\langle\rho u^{n}, v\right\rangle=\left\langle\rho u^{\star}, v\right\rangle-k_{n}\left\langle\nabla\left(p^{n-1 / 2}-p^{n-3 / 2}\right), v\right\rangle
$$

Useful FEniCS tools (I)

Note ∇ vs. ∇ :

```
dot(grad(u), u)
dot(u, nabla_grad(u))
```

Defining operators:

```
def sigma(u, p):
    return 2.0*mu*sym(grad(u)) - p*Identity(2)
```

The facet normal n :

$$
\mathrm{n}=\text { FacetNormal (mesh) }
$$

Useful FEniCS tools (II)

Assembling matrices and vectors:

```
A = assemble(a)
b = assemble(L)
```

Solving linear systems:

```
solve(A, x, b)
solve(A, x, b, "gmres", "ilu")
solve(A, x, b, "cg", "amg")
```


The FEniCS challenge!

Solve the incompressible Navier-Stokes equations for the flow of water around a dolphin. The water is initially at rest and the flow is driven by a pressure gradient.

The FEniCS challenge!

- Compute the solution on the time interval $[0,0.1]$ with time steps of size $k=0.0005$
- Set $p=1 \mathrm{kPa}$ at the inflow and $p=0$ at the outflow
- The density of water is $\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$ and the viscosity is $\mu=0.001002 \mathrm{~kg} /(\mathrm{m} \cdot \mathrm{s})$
- To check your answer, compute the average velocity in the x-direction.

The student(s) who first produce the right anwswer will be rewarded with an exclusive FEniCS coffee mug!

