
FEniCS Course
Lecture 4: Time-dependent PDEs

Contributors
Hans Petter Langtangen
Anders Logg
Marie E. Rognes

1 / 12

The heat equation

We will solve the simplest extension of the Poisson problem into
the time domain, the heat equation:

∂u

∂t
−∆u = f in Ω for t > 0

u = g on ∂Ω for t > 0

u = u0 in Ω at t = 0

The solution u = u(x, t), the right-hand side f = f(x, t) and the
boundary value g = g(x, t) may vary in space (x = (x0, x1, ...))
and time (t). The initial value u0 is a function of space only.

2 / 12

Time-discretization of the heat equation

We discretize in time using the implicit Euler (dG(0)) method:

∂u

∂t
≈ un − un−1

∆t

Semi-discretization of the heat equation:

un − un−1

∆t
−∆un = fn

un −∆t∆un = un−1 + ∆tfn

Solve for u1, u2, . . .

3 / 12

Variational problem for the heat equation

Find un ∈ V n such that

a(un, v) = Ln(v)

for all v ∈ V̂ where

a(u, v) =

∫
Ω
uv + ∆t∇u · ∇v dx

Ln(v) =

∫
Ω
un−1v + ∆tfnv dx

Note that the bilinear form a(u, v) is constant while the linear
form Ln depends on n

4 / 12

Pseudocode for a naive implementation of the
heat equation

from dolfin import *

Mesh and function space

mesh = UnitCube(8, 8, 8)

V = FunctionSpace(mesh , "CG", 1)

Time variables

dt = 0.01; k = Constant(dt); t = dt; T = 1.0

Previous and current solution

u0 = Function(V); u0.vector ()[:] = 1.0

u1 = Function(V)

Variational problem at each time

u = TrialFunction(V)

v = TestFunction(V)

f = Expression("t", t=t)

a = u*v*dx + k*inner(grad(u), grad(v))*dx

L = u0*v*dx + k*f*v*dx

bc = DirichletBC(V, 0.0, "near(x[0], 0.0)")

while (t <= T):

Solve

f.t = t

solve(a == L, u1 , bc)

Update

u0.assign(u1)

t += dt

plot(u1)

5 / 12

Time-stepping algorithm

Define the boundary condition
Compute u0 as the projection of the given initial value
Define the forms a and L
Assemble the matrix A from the bilinear form a
t← ∆t
while t 6 T do

Assemble the vector b from the linear form L
Apply the boundary condition
Solve the linear system AU = b for U and store in u1

t← t+ ∆t
u0 ← u1 (get ready for next step)

end while

6 / 12

Test problem

We construct a test problem for which we can easily check the
answer. We first define the exact solution by

u = 1 + x2 + αy2 + βt

We insert this into the heat equation:

f = u̇−∆u = β − 2− 2α

The initial condition is

u0 = 1 + x2 + αy2

This technique is called the method of manufactured solutions

7 / 12

Handling time-dependent expressions

We need to define a time-dependent expression for the
boundary value:

alpha = 3

beta = 1.2

g = Expression("1 + x[0]*x[0] + \

alpha*x[1]*x[1] + beta*t",

alpha=alpha , beta=beta , t=0)

Updating parameter values:

g.t = t

8 / 12

Projection and interpolation

We need to project the initial value into Vh:

u0 = project(g, V)

We can also interpolate the initial value into Vh:

u0 = interpolate(g, V)

9 / 12

A closer look at solve

For linear problems, this code

solve(a == L, u, bcs)

is equivalent to this

Assembling a bilinear form yields a matrix

A = assemble(a)

Assembling a linear form yields a vector

b = assemble(L)

Applying boundary condition info to system

for bc in bcs:

bc.apply(A, b)

Solve Ax = b

solve(A, u.vector (), b)

10 / 12

Implementing the variational problem

dt = 0.3

u0 = project(g, V)

u1 = Function(V)

u = TrialFunction(V)

v = TestFunction(V)

f = Constant(beta - 2 - 2*alpha)

a = u*v*dx + dt*inner(grad(u), grad(v))*dx

L = u0*v*dx + dt*f*v*dx

bc = DirichletBC(V, g, "on_boundary")

assemble only once , before time -stepping

A = assemble(a)

11 / 12

Implementing the time-stepping loop

T = 2

t = dt

while t <= T:

b = assemble(L)

g.t = t

bc.apply(A, b)

solve(A, u1.vector (), b)

t += dt

u0.assign(u1)

12 / 12

Programming exercise

• Write a program to solve the heat equation

• Write your program in a file named heat.py

• Run your program using

python heat.py

• A complete program suggestion is available1 as

transient/diffusion/d1 d2D.py

1http://fenicsproject.org/pub/book/tutorial/
13 / 12

http://fenicsproject.org/pub/book/tutorial/

