
FEniCS Course
Lecture 3: Static nonlinear PDEs

Contributors
Marie E. Rognes

1 / 16



The Stokes equations

We consider the stationary Stokes equations: find the velocity u
and the pressure p such that

−div(ν∇u− p I) = f in Ω

div u = 0 in Ω

with boundary conditions

u = 0 on ∂ΩD

(ν∇u− p I) · n = p0 n on ∂ΩN

If viscosity ν varies with u (or p),

ν = ν(u)

this is a nonlinear system of partial differential equations.

2 / 16



The Stokes equations: variational formulation

Assume that u ∈ V and p ∈ Q, then w = (u, p) ∈ V ×Q = W .
Let f = 0.
Multiply by test functions (v, q) ∈W and integrate first
equation by parts∫

Ω
ν∇u · ∇ v dx−

∫
Ω
pdiv v dx−

∫
∂Ω

(ν∇u− p I) · n · v ds = 0∫
Ω

div u q dx = 0

Adding the equations and incorporating the boundary
conditions we obtain: find (u, p) ∈W = V0 ×Q such that∫

Ω
ν∇u · ∇ v dx−

∫
Ω
pdiv v dx−

∫
Ω

div u q dx =

∫
∂ΩN

p0 v · n ds

for all (v, q) ∈W = V0 ×Q where V0 = {v ∈ V s.t.v|∂ΩD
= 0}.

3 / 16



Canonical nonlinear variational problem

The following canonical notation is used in FEniCS for
(possibly) nonlinear problems: find w ∈W such that

F (w; y) = 0

for all y ∈ Ŵ .

Here, w is a function, and y is a test function, and so F is a
linear form.

For the Stokes equations, we have w = (u, p), y = (v, q)

F (w; y) =

∫
Ω
ν∇u · ∇ v dx−

∫
Ω
p div v dx−

∫
Ω

div u q dx

−
∫
∂ΩN

p0 v · n ds

4 / 16



The Stokes equations introduce some new
concepts

• Mixed function spaces

• Integration over boundaries

• Solving nonlinear problems (if nonlinear viscosity)

• (Reading a mesh from file)

• (Adjusting parameters)

5 / 16



Step by step: initializing a mesh from file

DOLFIN can read and write meshes from its own .xml or
.xml.gz format

mesh = Mesh("dolfin -1.xml")

plot(mesh)

Conversion tools exist for other mesh formats

man dolfin -convert

We will need the normal on the mesh boundary facets:

n = FacetNormal(mesh)

6 / 16



Step by step: creating mixed function spaces
Mixed function spaces are created by taking the product of
more basic spaces

V = VectorFunctionSpace(mesh , "CG", 2)

Q = FunctionSpace(mesh , "CG", 1)

W = V * Q

# W = MixedFunctionSpace ([V, Q])

You can define functions on mixed spaces and split into
components:

w = Function(W)

(u, p) = split(w)

... and arguments:

y = TestFunction(W)

(v, q) = split(y)

# (v, q) = TestFunctions(W)

7 / 16



Step by step: more about defining expressions

Again, the pressure boundary value can be defined using an
expression:

p0 = Expression("1 - a*x[0]", degree=1, a=2)

When we specify the degree argument, this will be used as the
polynomial degree when the expression is used in forms.
Otherwise, the degree will be estimated heuristically.

All parameters (in this case a) must be specified at
initialization, and can be modified later

8 / 16



FAQ: What is the difference between a Function

and an Expression?

Function
... is described by expansion coefficients with reference to a
FunctionSpace with a given basis: u =

∑
i uiφi

u = Function(V) # Defines the function space

u.vector () # The coefficients

Expression

... given by an evaluation formula (more or less explicit)

f = Expression("...")

class Source(Expression):

def eval(self , values , x)

...

An Expression can be projected or interpolated, or in some other
way mapped, onto a Function, the converse is non-trivial.

9 / 16



Step by step: defining the viscosity

We may want to play with different viscosities.

In the simplest case, it is just constant: ν = 0.1

nu = 0.1

... or it can vary with the domain: ν = 1 + 100x1

nu = Expression("1 + 100*x[1]")

... or it can vary with the unknown: ν = (u · u)1/2

w = Function(W)

(u, p) = split(w)

def viscosity(u):

return inner(u, u)**(1./2)

nu = viscosity(u)

10 / 16



Step by step: defining a boundary condition on
a subspace

Assume that we have a mixed function space:

V = VectorFunctionSpace (...)

Q = FunctionSpace (...)

W = V * Q

The subspaces of W can be retrieved using sub:

W0 = W.sub(0)

Note that W0 is not completely the same as V

The following code defines a homogenous Dirichlet boundary
condition on the first subspace

bc = DirichletBC(W.sub(0), (0.0, 0.0),

"near(x[0], 0.0) || near(x[0], 1.0)")

11 / 16



Stokes: defining the variational form
Assume that we have

w = Function(W)

(u, p) = split(w)

(v, q) = TestFunctions(W)

p0 = ...; nu = ...; n = ...

We can now specify the linear form F

F = (nu*inner(grad(u), grad(v))

- div(u)*q - div(v)*p)*dx

- p0*dot(v, n)*ds

Note that dx denotes integration over cells, ds denotes integration
over exterior (boundary) facets, dS denotes integration over interior
facets.

FAQ: How to specify integration over only subdomains? See the
Poisson with multiple subdomains demo.

12 / 16



Step by step: solving (nonlinear) variational
problems

Once a variational problem has been defined, it may be solved
by calling the solve function (as for linear problems):

solve(F == 0, w, bc)

Or more verbosely

dF = derivative(F, w)

pde = NonlinearVariationalProblem(F, w, bcs ,dF)

solver = NonlinearVariationalSolver(pde)

solver.solve ()

Extracting the subfunctions (as DOLFIN functions)

(u, p) = w.split(deepcopy=True)

13 / 16



Step by step: adjusting parameters in DOLFIN

Adjusting global parameters

from dolfin import *

info(parameters , True)

parameters["form_compiler"]["cpp_optimize"] =

True

#parameters [" form_compiler "][" optimize "] = True

Adjusting local (and nested) parameters

solver = NonlinearVariationalSolver(pde)

info(solver.parameters , True)

solver.parameters["symmetric"] = True

solver.parameters["newton_solver"]["maximum_iterations"]

= 100

14 / 16



Stokes: complete code (an example)

from dolfin import *

# Use -02 optimization

parameters["form_compiler"]["cpp_optimize"] = True

# Define mesh and geometry

mesh = Mesh("dolfin -1.xml.gz")

n = FacetNormal(mesh)

# Define Taylor --Hood function space W

V = VectorFunctionSpace(mesh , "CG", 2)

Q = FunctionSpace(mesh , "CG", 1)

W = V * Q

# Define Function and TestFunction(s)

w = Function(W)

(u, p) = split(w)

(v, q) = TestFunctions(W)

# Define viscosity and bcs

nu = Expression("1 + 100*pow(x[1], 2)", degree=2)

p0 = Expression("1.0 - x[0]", degree=1)

bcs = DirichletBC(W.sub(0), (0.0, 0.0),

"near(x[1], 0.0) || near(x[1], 1.0)")

# Define form

F = (nu*inner(grad(u), grad(v))

- div(u)*q - div(v)*p)*dx

- p0*dot(v, n)*ds

solve(F == 0, w, bcs)

5.75e-215.75e-21 0.002840.00284 0.005690.00569 0.008530.00853 0.01140.0114

-0.00744-0.00744 0.277 0.277 0.561 0.561 0.845 0.845 1.13  1.13  

15 / 16



The FEniCS challenge!
Solve the Stokes equations

−div(ν∇u− p I) = f in Ω

div u = 0 in Ω

u = 0 on ∂ΩD

(ν∇u− p I) · n = p0 n on ∂ΩN

letting

• Ω be defined by the dolfin-2.xml mesh,

• ∂ΩN = {x0 = 0 or x0 = 1} with
p0 = 1 on x0 = 0 and p0 = 0 on x0 = 1.

• ∂ΩD = ∂Ω\∂ΩN .

• ν = ν(u) = 0.5(∇u · ∇u)1./(2(n−1)) with n = 4

Hint: You may need to compute an approximation first in order
to provide a suitable initial guess to the Newton solver

16 / 16


