= 0 for all tau

= for all v
is solved using BDM (BrezziDouglasMarini) elements of degree k for
(sigma, tau) and DG (discontinuous Galerkin) elements of degree k  1
for (u, v).
Original implementation: ../cpp/main.cpp by Anders Logg and Marie Rognes
"""
# Copyright (C) 2007 Kristian B. Oelgaard
#
# This file is part of DOLFIN.
#
# DOLFIN is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# DOLFIN is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with DOLFIN. If not, see .
#
# Modified by Marie E. Rognes 2010
# Modified by Anders Logg 2011
#
# First added: 20071114
# Last changed: 20121112
# Begin demo
from dolfin import *
# Create mesh
mesh = UnitSquareMesh(32, 32)
# Define function spaces and mixed (product) space
BDM = FunctionSpace(mesh, "BDM", 1)
DG = FunctionSpace(mesh, "DG", 0)
W = BDM * DG
# Define trial and test functions
(sigma, u) = TrialFunctions(W)
(tau, v) = TestFunctions(W)
# Define source function
f = Expression("10*exp((pow(x[0]  0.5, 2) + pow(x[1]  0.5, 2)) / 0.02)")
# Define variational form
a = (dot(sigma, tau) + div(tau)*u + div(sigma)*v)*dx
L =  f*v*dx
# Define function G such that G \cdot n = g
class BoundarySource(Expression):
def __init__(self, mesh):
self.mesh = mesh
def eval_cell(self, values, x, ufc_cell):
cell = Cell(self.mesh, ufc_cell.index)
n = cell.normal(ufc_cell.local_facet)
g = sin(5*x[0])
values[0] = g*n[0]
values[1] = g*n[1]
def value_shape(self):
return (2,)
G = BoundarySource(mesh)
# Define essential boundary
def boundary(x):
return x[1] < DOLFIN_EPS or x[1] > 1.0  DOLFIN_EPS
bc = DirichletBC(W.sub(0), G, boundary)
# Compute solution
w = Function(W)
solve(a == L, w, bc)
(sigma, u) = w.split()
# Plot sigma and u
plot(sigma)
plot(u)
interactive()