
Finite Elements with Symbolic Computations
and Code Generation

Kent-Andre Mardal and Sandve Alnæs

February 28, 2008

Kent-Andre Mardal and Sandve Alnæs Finite Elements with Symbolic Computations and Code Generation

Outline

We will focus on creating/assembling matrices based on FEM
Manual implementation of the integrand/variational form based
on quadrature dominates the available software
This approach is certainly the most accessible and easy
approach
Can symbolic mathematics combined with code generation
compete with this approach ?
What additional tools are needed ?
What about efficiency and generality ?

Kent-Andre Mardal and Sandve Alnæs Finite Elements with Symbolic Computations and Code Generation

Additional tools

Language to express finite element methods
(Python modules in the Fenics project : FIAT, FFC and SyFi)
Compilers that translate code to Fortran/C/C++ for efficient
evaluation
(Python modules in the Fenics project : FIAT, FFC and SyFi)
A low level specification of how the generated code look
(The Fenics project UFC (Unified Form-assembly Code),
containing a C header file)

Kent-Andre Mardal and Sandve Alnæs Finite Elements with Symbolic Computations and Code Generation

Short Description of SyFi

Purpose

SyFi is a tool for defining polygons, polynomial spaces, degrees
of freedom, and finite elements
SyFi makes it easy to define weak forms (differentiation and
integration of polynomials over polygons)
SyFi generates efficient C++ code for the computation of
matrices

Dependencies

SyFi relies heavily on GiNaC and Swiginac for the symbolic
computations and code generation
SyFi can generate matrices based on either a Dolfin or a
Diffpack mesh (we plan to include other meshes soon)
SyFi can generate either Epetra or PyCC matrices (we plan to
include other matrices soon)

Kent-Andre Mardal and Sandve Alnæs Finite Elements with Symbolic Computations and Code Generation

Short Description of GiNaC and Swiginac

GiNaC
GiNaC is a C++ library for symbolic mathematics
Authors: C. Bauer, C. Dams A. Frink, V. Kisil, R. Kreckel, A.
Sheplyakov, J. Vollinga
URL: www.ginac.de
License : GPL

Swiginac

Swiginac is a Python interface to GiNaC
Authors: O. Skavhaug and O. Certik
URL: http://swiginac.berlios.de/
License: Open

Kent-Andre Mardal and Sandve Alnæs Finite Elements with Symbolic Computations and Code Generation

Swiginac Code Example

from swiginac import *

create the symbols x and y
x = symbol(’x’); y = symbol(’y’)

create a function f = x*x*y*y
f = x*x*y*y

differentiate f with respect to x
dfdx = diff(f,x)

integrate f on x=[0,1]
intf = integral(x,0,1,f).eval_integ()

The Taylor series of order 10 of cos(x) around 0.5
g = cos(x)
print g.series(x == 0.5, 10)

Kent-Andre Mardal and Sandve Alnæs Finite Elements with Symbolic Computations and Code Generation

SyFi Extends GiNaC/Swiginac

GiNaC/Swiginac supports:

Polynomials
Differentiation with respect to one variable
Integration with respect to one variable

Basic Extensions in SyFi:

Polynomial spaces (such as Legendre and Bernstein)
Differentiations with respect to several variables
Integration over polygons

→ SyFi extends GiNaC/Swiginac with the ingredients typically
needed in finite element methods

Kent-Andre Mardal and Sandve Alnæs Finite Elements with Symbolic Computations and Code Generation

Demo: Bernstein polynomials on a Triangle

from swiginac import *
from SyFi import *

create the reference triangle
t = ReferenceTriangle()

the space of Bernstein polynomials (order 2)
polynom, coeffs, basis = bernstein(2, t, ’a’)

differentiate the polynom
dpdx = diff(polynom, x)

integrate the polynom over the triangle t
integral = t.integrate(polynom)

integrate the dpdx over the edge 1
integral2 = t.line(1).integrate(dpdx)

Kent-Andre Mardal and Sandve Alnæs Finite Elements with Symbolic Computations and Code Generation

Elements currently implemented in SyFi

Finite Elements
continuous and discontinuous Lagrangian elements (arbitrary
order)
Nedelec elements (arbitrary order)
Nedelec H(div) elements (arbitrary order)
Raviart-Thomas elements (arbitrary order)
Crouzeix-Raviart elements
Hermite elements
Bubble elements
Arnold-Falk-Winther elasticity element (weak symmetry)
(arbitrary order)

Kent-Andre Mardal and Sandve Alnæs Finite Elements with Symbolic Computations and Code Generation

Evaluation of Weak Forms in SyFi

We will now demonstrate the computation of various element
matrices in SyFi

The mass matrix on a reference triangle:

M ij =

∫
T

Ni Nj dx

The stiffness matrix on a mapped tetrahedron:

Aij =

∫
T
(J−1∇Ni) · (J−1∇Nj) dx

where J is the Jacobian of the geometry mapping

Kent-Andre Mardal and Sandve Alnæs Finite Elements with Symbolic Computations and Code Generation

Demo: Computing the Mass Matrix on the Reference
Triangle

from swiginac import *
from SyFi import *

t = ReferenceTriangle()
fe = LagrangeFE(t, 3)

for i in range(0, fe.nbf()):
for j in range(0, fe.nbf()):

Aij = t.integrate(fe.N(i)*fe.N(i))

Kent-Andre Mardal and Sandve Alnæs Finite Elements with Symbolic Computations and Code Generation

UFC - Unified Form-assembly Code

UFC
UFC - Unified Form-assembly Code
Low level specification of class declaration and function
signatures for finite elements, element tensors etc.
Joint work with Logg, Alnæs, Skavhaug and Langtangen

Kent-Andre Mardal and Sandve Alnæs Finite Elements with Symbolic Computations and Code Generation

Demo: Generated Code for the Mass Matrix

virtual void tabulate_tensor(double* A,
const double * const * w,
const cell& c) const {

// compute D

A[10*0 + 0]=(5.6547619047619046e-03)*D;
A[10*0 + 1]=(1.3392857142857143e-03)*D;
A[10*0 + 3]=(8.1845238095238097e-04)*D;
A[10*0 + 4]=(1.3392857142857143e-03)*D;
...
A[10*9 + 7]=(1.3392857142857143e-03)*D;
A[10*9 + 8]=(1.3392857142857143e-03)*D;
A[10*9 + 9]=(5.6547619047619046e-03)*D;

}

Kent-Andre Mardal and Sandve Alnæs Finite Elements with Symbolic Computations and Code Generation

Demo: Computing the Stiffness Matrix on a Mapped
Tethrahedron

from swiginac import *
from SyFi import *

t = ReferenceTriangle()
fe = LagrangeFE(t, 3)

J = symbolic_matrix(3,3, ‘‘J’’)

for i in range(0, fe.nbf()):
for j in range(0, fe.nbf()):

integrand = inner(grad(J, fe.N(i)),
grad(J, fe.N(j)))

Aij = t.integrate(integrand)

Kent-Andre Mardal and Sandve Alnæs Finite Elements with Symbolic Computations and Code Generation

Demo: Generated Code for the Stiffness Matrix

A[10*0+0]=(8.4999999999999998e-01*Jinv01*Jinv00
+4.2499999999999999e-01*(Jinv10*Jinv10)
+8.4999999999999998e-01*Jinv11*Jinv10
+4.2499999999999999e-01*(Jinv01*Jinv01)
+4.2499999999999999e-01*(Jinv11*Jinv11)
+4.2499999999999999e-01*(Jinv00*Jinv00))*D;

A[10*0+1]=(-6.3749999999999996e-01*Jinv01*Jinv00
-6.7500000000000004e-01*(Jinv10*Jinv10)
-6.3749999999999996e-01*Jinv11*Jinv10
+3.7499999999999999e-02*(Jinv01*Jinv01)
+3.7499999999999999e-02*(Jinv11*Jinv11)
-6.7500000000000004e-01*(Jinv00*Jinv00))*D;

...

Kent-Andre Mardal and Sandve Alnæs Finite Elements with Symbolic Computations and Code Generation

Efficiency

The generated code is very efficient

The generated code for the mass and stiffness matrices is very
efficient
The reason is that the spatial variables x , y and z are integrated
away
What remains is polynomials in terms of J−1

The code is almost as efficient as similar code generated by FFC
Adding the element matrix to the global matrix now dominates
the time used to assemble the matrix

Kent-Andre Mardal and Sandve Alnæs Finite Elements with Symbolic Computations and Code Generation

The Computation of the Jacobian matrix

We will now demonstrate the computation the Jacobian matrix for a
nonlinear PDE

u =
∑

j ujN j

Nonlinear convection diffusion equation

F i =

∫
T
(u · ∇u) · N i +∇u : ∇N i) dx

The Jacobian matrix
J ij =

∂F i

∂uj

Kent-Andre Mardal and Sandve Alnæs Finite Elements with Symbolic Computations and Code Generation

SyFi Code Example : Convection-Diffusion Matrix

.. initialize element

for i in range(0,fe.nbf()):

compute diffusion term
fi_diffusion = inner(grad(u), grad(fe.N(i)))

compute convection term
uxgradu = (u.transpose()*grad(u))
fi_convection = inner(uxgradu, fe.N(i), True)

fi = fi_diffusion + fi_convection
Fi = polygon.integrate(fi)

for j in range(0,fe.nbf()):
differentiate to get the Jacobian
Jij = diff(Fi, uj)
print "J[%d,%d]=%s "%(i,j,Jij)

Kent-Andre Mardal and Sandve Alnæs Finite Elements with Symbolic Computations and Code Generation

Efficiency

Efficiency and Generality

Again the generated code is efficient!
There is now need to compute the Jacobian by hand, it is done
automatically
The approach is very general!
Each entry in the matrix is now a polynomial which is linear in
{ui} and quadratic in J−1

Kent-Andre Mardal and Sandve Alnæs Finite Elements with Symbolic Computations and Code Generation

Complicated nonlinear problems

We have tested this approach for more complicated nonlinear
problems like hyper-elastic equation described by the Fung law
The equations are so large that they want fit this slide
The matrix expressions are several Megabytes!
The expression is a polynomial in many variables
The polynomial is expressed in a bad way

Kent-Andre Mardal and Sandve Alnæs Finite Elements with Symbolic Computations and Code Generation

Conclusion

Symbolic mathematics and code generation is an alternative to
the traditional quadrature based approach
This approach requires a symbolic engine like e.g. GiNaC
The generated code is often very efficient
The symbolic engine eliminates a lot of the cumbersome task like
computing the Jacobian in case of a non-linear problem
Verification via MMS (the method of manufactured solutions)
comes essentially for free
Efficiency rely on an efficient representation of the (typically
polynomial) expression
More info: www.fenics.org

Kent-Andre Mardal and Sandve Alnæs Finite Elements with Symbolic Computations and Code Generation

