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Atmosphere, ocean 
and other geophysical 

simulations
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Numerical considerations for atmosphere and 
ocean simulations

In these very thin domains, there 
is a large scale separation between 
the physics and numerics in the 
horizontal and vertical directions.!
!

This makes vertically aligned 
meshes numerically advantageous.!
!

We will also show that they have 
performance advantages.
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Vertical Alignment

Also good for the performance 
side!!

Goal: Vertical alignment of cells 
does not require any explicit 
topological information to be 
maintained about the layers.!

We can therefore:!

➡confine indirect accesses to 
the bottom layer of the mesh.!

➡The rest of the accesses are 
direct.
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   data[map[cell#]]
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   data[[m, m+1,!

            n, n+1, !

            p, p+1]]
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Vertical Alignment

Also good for the performance 
side!!

Goal: Vertical alignment of cells 
does not require any explicit 
topological information to be 
maintained about the layers.!

We can therefore:!

➡confine indirect accesses to 
the bottom layer of the mesh.!

➡have the rest of the accesses 
as direct.
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   data[[m+1, m+1+1,!

            n+1, n+1+1, !

            p+1, p+1+1]]
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   data[[m+2, m+1+2,!

            n+2, n+1+2, !

            p+2, p+1+2]]
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Code generation
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Loop over all cells
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Loop over all cells

Use bottom map
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Loop over all cells

Use bottom map

Loop over layers
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Code generation
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Loop over all cells

Use bottom map

Loop over layers

 Add offset to get next cell up
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Code generation
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Extruded Helmholtz Example
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Extruded Meshes in Firedrake

27

The type of extrusion!
!
uniform: adds an extra coordinate for the new dimension the 
extrusion is going to be performed in. The vertical extent is 
evenly split between layers.!
!
radial: usually applies to manifolds and extrudes the points of 
the mesh in the outwards direction from the origin.
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Extruded Meshes in Firedrake
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Custom extrusion!
!
An extrusion kernel can be explicitly specified and passed to the 
extruded mesh constructor.!
!
This overwrites both layer_height and extrusion_type.



16.06.2014 Imperial College London

Extruded Helmholtz Example
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Valuable Bandwidth

30

We will use a simple metric to model the performance of 
bandwidth bound mesh wide operations i.e. the valuable 
bandwidth.!

The goal: compare against the peak performance of the 
machine (STREAM).!

Assumption: each piece of data required by the kernel is 
moved only once (assume perfect re-use).!

Advantage: safeguard against bad numbering in the horizontal.!

Limitation: in cases where data is shared the extra traffic 
generated by data being load more than once is not taken into 
account even though no better numbering exists.
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We will use a simple metric to model the performance of 
bandwidth bound mesh wide operations i.e. the valuable 
bandwidth.!

The goal: compare against the peak performance of the machine 
(STREAM).!

Multithreaded STREAM performance: 42 GB/s!

!
!
Limitation: in cases where data is shared the extra traffic 
generated by data being load more than once is not taken into 
account even though no better numbering exists.
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RHS Assembly Performance: v * dx
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Machine: 12-core Sandy Bridge
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RHS Assembly Performance: v * dx
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Machine: 12-core Sandy Bridge

29.3 GB/s

50 - 70% of STREAM
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RHS Assembly Performance: v * dx

34

Layers

Details: run using 12 processes
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Layers

Details: run using 12 processes< 20 layers
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RHS Assembly Performance: f * v * dx
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50 - 70% of STREAM
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RHS Assembly Performance: f * v * dx
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< 20 layers

Details: run using 12 processes



16.06.2014 Imperial College London

LHS Assembly Performance

38

(dot(grad(v), grad(u)) + v * u) * dx

Single core run.
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LHS Assembly Performance
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(dot(grad(v), grad(u)) + v * u) * dx

Limitation: Single core run.
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Future work: vertical structure exploitation 
in not just the kernel wrapper.
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➡Improve the sparsity insertion to exploit the 
vertical structure: one insert per column.!

!

➡Extend the valuable bandwidth model to include 
operational intensity: FLOPS per valuable bytes.
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And now over to Andrew...
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