

Solution to a Helmholtz equation in $[0,1] \times[0,1] \times[0,0.4]$:

$$
u=\cos (\pi x) \cos (2 \pi y) \sin \left(1.5 \pi \frac{z}{0.4}\right)
$$

Solution to a Helmholtz equation in $[0,1] \times[0,1] \times[0,0.4]$:

$$
u=\cos (\pi x) \cos (2 \pi y) \sin \left(1.5 \pi \frac{z}{0.4}\right)
$$

Part II:

Function spaces on extruded meshes

Function spaces

Geometrically:

Function spaces

Geometrically:

$(x, y, z) \in \operatorname{prism} \Longleftrightarrow(x, y) \in$ triangle, $z \in$ interval

Function spaces

Outer-product elements

Recall: within a cell, we have local basis functions $\Phi_{i}(\vec{X})$.
Suppose we have $\left\{\Phi_{i}^{2 \mathrm{D}}(X, Y)\right\}$ and $\left\{\Phi_{j}^{1 \mathrm{D}}(Z)\right\}$. Then there is a natural way to generate basis functions on the extruded cell:

$$
\Phi_{i, j}^{\text {extr }}(X, Y, Z):=\Phi_{i}^{2 \mathrm{D}}(X, Y) \times \Phi_{j}^{1 \mathrm{D}}(Z)
$$

Bonus: if $\left\{\boldsymbol{\phi}_{i}^{2 \mathrm{D}}\right\}$ and $\left\{\boldsymbol{\phi}_{j}^{1 \mathrm{D}}\right\}$ are nodal, then so is $\left\{\boldsymbol{\phi}_{i, j}^{\text {extr }}\right\}$.

Function spaces

Worked example:

CG1 on triangles: (nodal) basis functions are $\{X, Y, 1-X-Y\}$. CG1 on intervals: (nodal) basis functions are $\{Z, 1-Z\}$.
\Longrightarrow CG1 \times CG1 on prisms: (nodal) basis functions are $\{X Z, X(1-Z), Y Z, Y(1-Z),(1-X-Y) Z,(1-X-Y)(1-Z)\}$.

Function spaces

Firedrake/UFL syntax:

mesh $=$ ExtrudedMesh (...)
V_horiz = FiniteElement("CG", triangle, 1)
V_vert = FiniteElement("CG", interval, 1)
V_elt = OuterProductElement(V_horiz, V_vert)

V = FunctionSpace(mesh, V_elt)
\# in this case, we could have used the more compact
\# FunctionSpace(mesh, "CG", 1, vfamily="CG", vdegree=1)

Function spaces

Vector-Valued sidecs
 Note: RT/BDM/Nédélec-type elements, NOT VectorFunctionSpace

Problems:

- Dimension mismatch. If $\Phi_{i}^{2 D}$ takes values in \mathbb{R}^{2} (or \mathbb{R}) and $\Phi_{j}^{1 \mathrm{D}}$ is scalar-valued, their product is in \mathbb{R}^{2} (or \mathbb{R}), never \mathbb{R}^{3}.
- The result effectively needs to be "padded" with zeros to produce a function taking values in \mathbb{R}^{3}.
- In some situations, there is no single "correct" padding...

Function spaces

Vector-valued spaces

Trouble in extruded 1D:

$$
\begin{aligned}
& \text { V_horiz = FiniteElement("CG", interval, 1) } \\
& \text { V_vert = FiniteElement("DG", interval, 0) } \\
& \text { V_elt = OuterProductElement(V_horiz, V_vert) }
\end{aligned}
$$

- Element is scalar-valued
- Basis functions X and $1-X$ (indpt. of Y)
- Horizontally continuous
- Vertically discontinuous

Function spaces

Vector-valued spaces

How to make this vector-valued?

Function spaces

Vector-valued spaces

How to make this vector-valued? Two possibilities:

- Basis functions $(X, 0)$ and $(1-X, 0)$
- Continuous normal component
- Discontinuous tangential component

- Basis functions $(0, X)$ and $(0,1-X)$
- Continuous tangential component
- Discontinuous normal component

Function spaces

Vector-valued spaces

Solution:

- Additional operators HDiv() and HCurl() to "expand" an OuterProductElement into a vector-valued element of the correct dimension, with the desired continuity.

Function spaces

Motivation: de Rham complexes

- Sequence of function spaces, linked by differential operators and more.
- Useful in mixed problems (stability properties).
E.g. lowest-order \mathcal{P}^{-}complex on tetrahedra:

Function spaces

Motivation: de Rham complexes

On prisms, the equivalent is

For this, we need product complexes.

Function spaces

Product complexes

For any 2 complexes $\left(U_{0}, \ldots, U_{m}\right)$ and $\left(V_{0}, \ldots, V_{n}\right)$,
we can build a product complex[*] $\left(W_{0}, \ldots, W_{m+n}\right)$, where

$$
W_{i}=\bigoplus_{j+k=i} U_{j} \otimes V_{k}
$$

- The U_{i} and V_{i} are just FiniteElement (...)
- \otimes becomes OuterProductElement
- \oplus becomes EnrichedElement, or just ' + '.
[*]Douglas N. Arnold, Daniele Boffi and Francesca Bonizzoni: Finite element differential forms on curvilinear cubic meshes and their approximation properties.

Function spaces

Product complexes example

Here, we will use

- the 2D complex $\left(C G_{1}, R T_{1}, D G_{0}\right)$, and
- the 1D complex $\left(C G_{1}, D G_{0}\right)$,

The product complex is then

$$
\begin{aligned}
& W_{0}=C G_{1} \otimes C G_{1} \\
& W_{1}=\left(R T_{1} \otimes C G_{1}\right) \oplus\left(C G_{1} \otimes D G_{0}\right) \\
& W_{2}=\left(D G_{0} \otimes C G_{1}\right) \oplus\left(R T_{1} \otimes D G_{0}\right) \\
& W_{3}=D G_{0} \otimes D G_{0}
\end{aligned}
$$

Function spaces

```
UO = FiniteElement("CG", triangle, 1)
U1 = FiniteElement("RT", triangle, 1)
U2 = FiniteElement("DG", triangle, 0)
V0 = FiniteElement("CG", interval, 1)
V1 = FiniteElement("DG", interval, 0)
WO = OuterProductElement(UO, VO)
W1 = HCurl(OPE(U1, VO)) + HCurl(OPE(U0, V1))
W2 = HDiv(OPE(U2, VO)) + HDiv(OPE(U1, V1))
W3 = OuterProductElement(U2, V1)
WOfs = FunctionSpace(mesh, WO)
```


Function spaces

```
WO = OuterProductElement(UO, VO)
W1 = HCurl(OPE(U1, V0)) + HCurl(OPE(U0, V1))
W2 = HDiv(OPE(U2, V0)) + HDiv(OPE(U1, V1))
W3 = OuterProductElement(U2, V1)
```


$C G_{1} \otimes C G_{1} \quad\left(R T_{1} \otimes C G_{1}\right) \oplus\left(C G_{1} \otimes D G_{0}\right) \quad\left(D G_{0} \otimes C G_{1}\right) \oplus\left(R T_{1} \otimes D G_{0}\right) \quad D G_{0} \otimes D G_{0}$

Function spaces

Bonus:

Vincent Dumoulin (Imperial MSc student) + David Ham + Lawrence Mitchell

\Longrightarrow UFL-like language, based on FEEC instead of vector calculus (in-built support for complexes and product complexes)

Function spaces

Limitations

- Should be taking advantage of product structure when doing quadrature; currently doing more operations than necessary.
- No FIAT-level support for run-time function evaluation within an element (not supported in Firedrake anyway).
- Shortcuts taken in Jacobian calculation \Longrightarrow Jacobian not exact on radially extruded meshes (to be fixed when we implement non-affine support).

Conclusions

- Firedrake has support for extruded meshes, which are appropriate in geophysical and other contexts.
- For a modest number of layers, performance approaches that of a structured mesh, since we can visit a whole column for each unstructured cell access.
- Appropriate function spaces can be generated by manipulating existing UFL FiniteElement objects, using OuterProductElement and HDiv/HCurl.
http://www.firedrakeproject.org

Imperial College

New arrivals at the zoo

Grantham Institute
for Climate Change

