

Solution to a Helmholtz equation in $[0,1] \times [0,1] \times [0,0.4]$:

$$u = \cos(\pi x) \cos(2\pi y) \sin\left(1.5\pi \frac{z}{0.4}\right)$$

Solution to a Helmholtz equation in $[0,1]\times[0,1]\times[0,0.4]:$

$$u = \cos(\pi x) \cos(2\pi y) \sin\left(1.5\pi \frac{z}{0.4}\right)$$

Part II: Function spaces on extruded meshes

Function spaces

Function spaces

 $(x, y, z) \in \mathsf{prism} \iff (x, y) \in \mathsf{triangle}, \ z \in \mathsf{interval}$

Outer-product elements

Recall: within a cell, we have local basis functions $\Phi_i(\vec{X})$.

Suppose we have $\{\Phi_i^{2D}(X, Y)\}$ and $\{\Phi_j^{1D}(Z)\}$. Then there is a natural way to generate basis functions on the extruded cell:

$$\Phi_{i,j}^{\mathsf{extr}}(X,Y,Z) := \Phi_i^{\mathsf{2D}}(X,Y) \times \Phi_j^{\mathsf{1D}}(Z)$$

Bonus: if $\{\Phi_i^{2D}\}$ and $\{\Phi_i^{1D}\}$ are *nodal*, then so is $\{\Phi_{i,j}^{\text{extr}}\}$.

Function spaces

Worked example:

CG1 on triangles: (nodal) basis functions are $\{X, Y, 1 - X - Y\}$. CG1 on intervals: (nodal) basis functions are $\{Z, 1 - Z\}$.

 $\implies \mathsf{CG1} \times \mathsf{CG1} \text{ on prisms: (nodal) basis functions are} \{XZ, X(1-Z), YZ, Y(1-Z), (1-X-Y)Z, (1-X-Y)(1-Z)\}.$

Function spaces

Firedrake/UFL syntax:

```
mesh = ExtrudedMesh(...)
```

V_horiz = FiniteElement("CG", triangle, 1)
V_vert = FiniteElement("CG", interval, 1)
V_elt = OuterProductElement(V_horiz, V_vert)

V = FunctionSpace(mesh, V_elt)

in this case, we could have used the more compact
FunctionSpace(mesh, "CG", 1, vfamily="CG", vdegree=1)

Vector-valued spaces

Note: RT/BDM/Nédélec-type elements, NOT VectorFunctionSpace

Problems:

- Dimension mismatch. If Φ^{2D}_i takes values in ℝ² (or ℝ) and Φ^{1D}_j is scalar-valued, their product is in ℝ² (or ℝ), never ℝ³.
- The result effectively needs to be "padded" with zeros to produce a function taking values in ℝ³.
- In some situations, there is no single "correct" padding...

Function spaces

Vector-valued spaces

Trouble in extruded 1D:

V_horiz = FiniteElement("CG", interval, 1)
V_vert = FiniteElement("DG", interval, 0)
V_elt = OuterProductElement(V_horiz, V_vert)

- Element is scalar-valued
- Basis functions X and 1 X (indpt. of Y)
- Horizontally continuous
- Vertically discontinuous

Vector-valued spaces

How to make this vector-valued?

Vector-valued spaces

How to make this vector-valued? Two possibilities:

- Basis functions (X, 0) and (1 X, 0)
- Continuous normal component
- Discontinuous tangential component

- Basis functions (0, X) and (0, 1 X)
- Continuous tangential component
- Discontinuous normal component

Function spaces

Vector-valued spaces

Solution:

• Additional operators HDiv() and HCurl() to "expand" an OuterProductElement into a vector-valued element of the correct dimension, with the desired continuity.

Function spaces

Motivation: de Rham complexes

- Sequence of function spaces, linked by differential operators and more.
- Useful in *mixed* problems (stability properties).
- E.g. lowest-order \mathcal{P}^- complex on tetrahedra:

Motivation: de Rham complexes

On prisms, the equivalent is

For this, we need product complexes.

Function spaces

Product complexes

For any 2 complexes (U_0, \ldots, U_m) and (V_0, \ldots, V_n) , we can build a *product complex*[*] (W_0, \ldots, W_{m+n}) , where

$$W_i = \bigoplus_{j+k=i} U_j \otimes V_k$$

- The U_i and V_i are just FiniteElement(...)
- \otimes becomes OuterProductElement
- \oplus becomes EnrichedElement, or just '+'.

[*]Douglas N. Arnold, Daniele Boffi and Francesca Bonizzoni: *Finite element differential forms on curvilinear cubic meshes and their approximation properties.*

Function spaces

Product complexes example

Here, we will use

- the 2D complex (CG_1, RT_1, DG_0) , and
- the 1D complex (CG₁, DG₀),

The product complex is then

$$W_0 = CG_1 \otimes CG_1$$

$$W_1 = (RT_1 \otimes CG_1) \oplus (CG_1 \otimes DG_0)$$

$$W_2 = (DG_0 \otimes CG_1) \oplus (RT_1 \otimes DG_0)$$

$$W_3 = DG_0 \otimes DG_0$$

Function spaces

- U0 = FiniteElement("CG", triangle, 1)
- U1 = FiniteElement("RT", triangle, 1)
- U2 = FiniteElement("DG", triangle, 0)
- V0 = FiniteElement("CG", interval, 1) V1 = FiniteElement("DG", interval, 0)
- W0 = OuterProductElement(U0, V0)
- W1 = HCurl(OPE(U1, V0)) + HCurl(OPE(U0, V1))
- W2 = HDiv(OPE(U2, V0)) + HDiv(OPE(U1, V1))
- W3 = OuterProductElement(U2, V1)

```
WOfs = FunctionSpace(mesh, WO)
```

• • •

Function spaces

- W0 = OuterProductElement(U0, V0)
- W1 = HCurl(OPE(U1, V0)) + HCurl(OPE(U0, V1))
- W2 = HDiv(OPE(U2, V0)) + HDiv(OPE(U1, V1))
- W3 = OuterProductElement(U2, V1)

 $CG_1 \otimes CG_1 \quad (RT_1 \otimes CG_1) \oplus (CG_1 \otimes DG_0) \quad (DG_0 \otimes CG_1) \oplus (RT_1 \otimes DG_0) \quad DG_0 \otimes DG_0$

Bonus:

Vincent Dumoulin (Imperial MSc student) + David Ham + Lawrence Mitchell

 \implies UFL-like language, based on FEEC instead of vector calculus (in-built support for complexes and product complexes)

Limitations

- Should be taking advantage of product structure when doing quadrature; currently doing more operations than necessary.
- No FIAT-level support for run-time function evaluation within an element (not supported in Firedrake anyway).
- Shortcuts taken in Jacobian calculation ⇒ Jacobian not exact on *radially* extruded meshes (to be fixed when we implement non-affine support).

Conclusions

- Firedrake has support for extruded meshes, which are appropriate in geophysical and other contexts.
- For a modest number of layers, performance approaches that of a structured mesh, since we can visit a whole column for each unstructured cell access.
- Appropriate function spaces can be generated by manipulating existing UFL FiniteElement objects, using OuterProductElement and HDiv/HCurl.

http://www.firedrakeproject.org

New arrivals at the zoo

