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Heart disease is the leading cause of death in the world

[http://health-advisors.org]
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The beating of the heart is driven by the electrical
signalling of heart cells

[http://www.bostonscientific.com]
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Research aims at commercially and clinically driven
advances in cardiac diagnostics and treatments

[Edvardsen, Maleckar, Wall et al]

4 / 22



Adjoints are ubiquitous
Constrained optimal control

max
m

J(u,m) while F (u,m) = 0

Gradient-based optimization algorithms require the gradient of J with
respect to m.

dJ

dm
= Ju

∂u

∂m
+ Jm

Define the adjoint solution z

F ∗uz = Ju

Then, the derivative computation only involves one forward solve for u and
one backward solve for z independent of #m:

dJ

dm
= −Fmz + Jm

Other applications

Sensitivity analysis, data assimilation, error control, generalized stability
theory, ...
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Treating abnormal cardiac acitivity: How to find the
optimal region to treat atrial fibrillation by ablation?

Find the optimal ablation region
m to achieve defibrillation

min
m

J(u,m) s.t. F (u,m) = 0

[http://www.londonarrhythmiacentre.co.uk/]

For defibrillation, one may consider:

J(u,m) = ‖u− uideal‖2L2(0,T ;L2(Ωobs)) + αR(m)

[Nagaiah et al, 2011]
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The significant gap in maturity between forward and
reverse cardiac modelling motivates a new adjoint-enabled
simulation framework

Obtaining

$ hg clone ssh://hg@bitbucket.org/meg/adjoint-beat

$ cd adjoint-beat

$ python setup.py install --prefix=/home/meg/local

Usage

from beatadjoint import *

7 / 22



The governing equations: the bidomain model

Find the transmembrane potential v = v(x, t), the extracellular
potential ue(x, t) and the ionic current(s) s = s(x, t) such that for
almost all t ∈ (0, T ]:

vt − div(Mi∇ v +Mi∇ue) = −Iion(v, s) + Is,

div (Mi∇ v + (Mi +Me)∇ue) = g,

st = F (v, s),

with boundary conditions

(Mi∇ v +Mi∇ue) · n = 0, (Mi∇ v + (Mi +Me)∇ue) · n = 0

and ∫
Ω
ue = 0.

[Tung, 1978]
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The typical discretization approach is based on operator
splitting and iterations between an ODE and a PDE solve

1. With vn and sn as initial conditions at tn, find v∗ and s∗ solving

v∗t = −Iion(v∗, s∗),

s∗t = F (v∗, s∗)

on (tn, tn + θκ].
2. With v∗ as initial condition, find v† and un+1

e such that

v†t − div(Mi∇ v† +Mi∇un+1
e ) = Is,

div
(
Mi∇ v† + (Mi +Me)∇un+1

e

)
= g,

on In = (tn, tn+1].
3. If θ < 1: with v† and s∗ as initial conditions at tn+θκ, find vn+1 and
sn+1 solving

vn+1
t = −Iion(vn+1, sn+1),

sn+1
t = F (vn+1, sn+1)

on (tn + θκ, tn+1].
[Sundnes et al, 2006]

9 / 22



The specific forms of the ODEs are known as cell models,
and greatly vary in complexity

[Fitzhugh, 1961; Rodgers & McCulloch, 1994]

vt =
c1

v2
a

(v − vr)(v − vth)(vp − v)− c2

va
(v − vr)s

st = b(v − vrest − c s)

[ten Tusscher & Panfilov, 2006, www.cellml.org]
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ODE discretizations via multistage schemes

Let w = (v, s) and G = (−Iion, F ):

wt(x, t) = G(x, t, w(x, t)),

w(0) = w0.

For an s-stage scheme with time step κn and given wn, solve

ki(x) = κnG(x, tn + ciκn, wn(x) +

s∑
j=1

aijkj(x)), i = 1, . . . , s

w(x)n+1 = w(x)n +

s∑
i=1

biki(x).
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The three types of solve have different requirements in the
FEniCS context

Implicit non-linear solve (aij 6= 0 for all j > i)

ki(x)− κnG(x, tn + ciκn, wn(x) +

s∑
j=1

aijkj(x)) = 0

Explicit via function evaluation (aij = 0 for all j > i)

ki(x) = κnG(x, tn + ciκn, wn(x) +

i−1∑
j=1

aijkj(x))

Explicit via assignment

w(x)n+1 = w(x)n +

s∑
i=1

biki(x).

[→ dolfin/multistage/*, site-packages/dolfin/multistage/*, demo/undocumented/multi-stage-solver/*]
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Implementation of collocation methods motivated
introducing the point measure

Definition

Let X be a collection of points associated with the domain Ω. We
define the point measure dP relative to X by∫

Ω
I dP =

∑
x∈X

I(x) =
∑
x∈X

∫
Ω
Iδx dx.

Example

V = FiniteElement("CG", tetrahedron , 1)

v = TestFunction(V)

f = Coefficient(V)

L = f*v*dP

[ufl/measure.py, ffc/quadrature/*]
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FFC generated code for f*v*dP
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For vector-valued Lagrange elements, the point measure
allows for specifying and solving ODEs as variational forms.

Consider the system: find u ∈ V such that∫
Ω
Ia(u, v) dP =

∫
Ω
IL(v) dP

for all v ∈ V .

Let X be the collection of vertices. Let V =MN
1 .

For each xk ∈ X , find {uj}Jk such that∑
j∈Jk

Ia(φj , φi)(xk)uj = IL(φi)(xk)

for i ∈ Jk where Jk is the index set of basis functions that are
non-zero at xk, |Jk| = N .
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The point measures can be used to define multi-stage
schemes for solving collections of ODEs

Example case: Explicit via function evaluation

For each vertex xk, evaluate

ki(xk) = κnG(xk, tn + ciκn, wn(xk) +

i−1∑
j=1

aijkj(xk))

Equivalent FEniCS code

# Assume that G is an UFL Expr.

V = VectorElement("CG", T, 1, N)

v = TestFunction(V)

kappa = Constant(T)

rhs = kappa*inner(G, v)*dP
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Outline of the PointIntegralSolver algorithm
def step(G, k_i):

for x_k in vertices(mesh):

# Identify one cell and local vertex number

(cell , i) = cell_and_local_vertex(x_k)

# Restrict any coefficients in G to this cell

G.coefficients.restrict(w, cell)

# Evaluate right hand side

G.integrals[0].tabulate_tensor(b, w, cell , i)

# Extract subset of active local dofs

J_k = find_active_dofs(i)

# Reduce size of b

b = b[J_k]

# Compute the corresponding global dofs

dofs = ki.tabulate_dofs(cell)[J_k]

# Update ki

ki.vector (). add(b, dofs)
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The block structure of a forward multistage solution step

For simplicity of presentation, consider the case where

G(·, ·, w) = Cw

Forward structure (s = 2)


I 0 0 0

−κnC(·) I − κna11C(·) −κna12C(·) 0
−κnC(·) −κna21C(·) I − κna22C(·) 0
−I −b1 −b2 I




wn

k1
k2

wn+1

 =


w0

0
0
0
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The block structure of an adjoint multistage solution step

Adjoint structure


I −κnC∗(·) −κnC∗(·) −I
0 (I − κna11C(·))∗ −κna21C∗(·) −b1
0 −κna12C∗(·) (I − κna22C(·))∗ −b2
0 0 0 I




z0
z1
z2
z3

 =
∂J

∂w

[dolfin/site-packages/multistage, dolfin-adjoint/dolfin adjoint/pointintegralsolver.py]
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Cardiac wave propagation with abnormal tissue
conductivities as a basic example

# Set -up simulation scenario

cell = FitzhughNagumo ()

heart = CardiacModel(mesh , time , M_i , M_e , cell , I_s)

solver = SplittingSolver(heart)

# Solve as you go along

solutions = solver.solve((0, T), k_n)

for (timestep , fields) in solutions:

# Do something with solution fields

vt − div(Mi∇ v +Mi∇ue)− Iion(v, s) = Is

div(Mi∇ v + (Mi +Me)∇ue) = 0

st = b(v − vrest − c s)
Mi|e = AGi|eA

T , Gi|e = diag(gi|el, gi|et, gi|et)

[Thanks to Sjur Gjerald and Johan Hake for patient-specific mesh (generated from ultrasound), fibers and sheets]
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What is the sensitivity of the abnormal wave propagation
to the local tissue conductivities?

The wave propagation abnormality at a given time T :

J(v, s, u) = ‖v(T )− vobs(T )‖2, ∂J

∂ge|i|l|t
= ?

v_obs = Function(V, "healthy_obs_200.xml.gz")

J = Functional(inner(v - v_obs , v - v_obs)*dx*dt[T])

dJdg_s = compute_gradient(J, gs)
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[Wikimedia Commons]
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