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Overview

This talk is about efficiently solving XFEM based fracture 
simulations using Algebraic Multi Grid methods.

Questions answered by this talk:

● What problems can be solved by our approach?
● Why does it work?
● How do I need to change my XFEM software to use it?

Structure of the talk:

Part I : Theory & 2d implementation

Part II: Extensions to 3D and FEniCS



Part I
Theory

&
2d Implementation



Algebraic Multigrid Techniques for the 
eXtended Finite Element Method

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned 
subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration 

under contract DE-AC04-94AL85000.

Axel Gerstenberger, Ray Tuminaro

Thanks to: E. Boman, J. Gaidamour (Sandia), 
                 B. Hiriyur, H. Waisman (Columbia U.)

· Motivation 
    · A brief review of XFEM & Smoothed Aggregation - Algebraic Multigrid (SA-AMG)
        · Why does standard SA-AMG fail & how to fix it
            · Examples
                · Conclusion

SAND 2011-7629C



Objective: Employ parallel computers to better understand how fracture of  
     land ice affects the global climate. Fracture happens e.g. during

• the collapse of ice shelves,
• the calving of large icebergs, and 
• the role of fracture in the delivery of water to the bed of ice sheets. 

Ice shelves in Antarctica:

Larsen ‘B’ diminishing shelf
1998-2002
Other example: Wilkins ice shelf 2008

Amery ice shelf Glacial hydrology
(Source: http://www.sale.scar.org)

Fracture of ice 



Displacement approximation (shifted basis form.)

Linear elastic XFEM Formulation for Cracks

Jump Enrichment Tip Enrichment (brittle crack)

Bubnov-Galerkin method → Symmetric global system

Current implementation: bi-linear, Lagrange polynomials, quad4 elements



● iterative smoothers on finest and 
intermediate levels

● direct solve at the coarsest level

solve Au=b using recursive multilevel V Cycle:

• Oscillatory components of error are reduced 
effectively by smoothing, but smooth 
components attenuate slower

     → capture error at multiple resolutions 
using grid transfer operators R[k] and P[k]

     → optimal number of linear solver iterations
• In AMG, transfer operators are obtained 

from graph information of A
 → ideal for general, unstructured meshes

Multigrid principles

Restriction Pr
ol

on
ga
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n

smooth (pre-smoothing)
If k < maxlevel:
    restrict u to coarser level
    compute u on coarser level
    interpolate u to finer level
    smooth (post-smoothing)
return u



‘Standard’ SA-AMG for fracture problems

nDOF   = 5552
nnz      = 101004

Possible issues:
• XFEM matrix graph messes with aggregation

– Assumption of 2 unknowns per node not true
– Aggregates should not cross crack 

• How to define rigid body modes?
– Modes are used to define nullspace

• How to deal with large condition numbers?
– Define smoothers for each level

No multigrid

Smoothed 
Aggregation
AMG

Target!



Distinct region representation

XFEM: modified shifted enrichment
K M

FEM

1 2 3|4 5 6

1 2,3 4,5 6

Phantom node approach

1 2,4 3,5 6

crack



Aggregation for phantom nodes: 1D

Level 1

Aggregates are not connected on any level!

Level 2, …



Change of basis: 1d

Do XFEM developers have to use the phantom node approach? No!

G
● is extremely sparse,
● is simple to produce,
● exists for higher order Lagrange Polynomials and multiple 

dimensions.

XFEM: modified shifted enrichment Phantom node approach

For each node I with jump DOFs:

(similar: Menouillard 2008, …)



(  )* → sym. rev. Cuthill-McKee permutation for visualization

Modified shifted enrichment Phantom node approach

Change of basis: 2d

Mesh + BC + Enrichment



Null Space

Null space for phantom node approach
• Standard DOFs are treated as usual
• Phantom DOFs are treated like Standard DOFs

Null space for shifted enrichment approach
• Enriched DOFs don’t contribute to rigid body motion

– Put 0 into their respective rows

• Change of basis transformation also for nullspace

       1   2    3
                  …

1   0  -y_I
0   1   x_I

                  … 

Prolongation/Restriction should preserve zero-energy modes!

2D elasticity problem has 3 Zero Energy Modes (ZEMs):



Results for shifted jump enrichments

OC: 1.28-1.40

Using transformation to 
phantom node setup is crucial 
to allow standard graph-based 
aggregation!

Shifted enrichment

Phantom node

Conj. Gradient preconditioned
  with AMG,
● Direct solve on coarse level,
● Block-GS on all finer levels.



Conditioning: “Difficult” problems 1

What happens, if we move the crack near element edges?

Example 1:

epsilon cond. number # iter

5.0 x 10-1 2.0 x 1005 14

1.0 x 10-2 2.0 x 1005 14

1.0 x 10-2 1.0 x 1006 14

1.0 x 10-6 1.0 x 1008 14

1.0 x 10-8 1.0 x 1010 14

“Block Gauss-Seidel solver generally insensitive to certain conditioning problems that can 
be solved by diagonal scaling.”

A. Gerstenberger and R. Tuminaro, An algebraic multigrid approach to solve extended finite element method based fracture 
problems, Int. J. Numer. Meth. Engng., Vol. 94(3), 248--272, 2013, DOI: 10.1002/nme.4442

  

mesh size: 40x40 elements



Conditioning: “Difficult” problems 2

What happens, if we move the crack near nodes?

Example 2:

epsilon cond. number # iter

5.0 x 10-1 3.0 x 1005 14

1.0 x 10-1 2.0 x 1006 14

1.0 x 10-2 2.0 x 1010 14

1.0 x 10-3 2.0 x 1014 14

“Block Gauss-Seidel solver generally insensitive to certain conditioning problems that can 
be solved by diagonal scaling.”

A. Gerstenberger and R. Tuminaro, An algebraic multigrid approach to solve extended finite element method based fracture 
problems, Int. J. Numer. Meth. Engng., Vol. 94(3), 248--272, 2013, DOI: 10.1002/nme.4442

  

mesh size: 40x40 elements



Concluding Remarks

Standard SA-AMG methods can be used, if proper input is provided!

Key components:
– System matrix must be in phantom-node form for jump DOF

• Either you already have it, (voids, fluid-structure interaction, …) , or
• do a simple transformation

– Simple null space construction: zero entries for shifted enriched DOF
– Two-step smoothing on finest level (or add your own smoother)

→ Very good convergence behavior.

Current & Future Work
– What happens to tiny element fractions (conditioning)?
– 3d implementation (based on MueLu, the new Multigrid package in Trilinos)



Part II
3D implementation in FEniCS



Introduction - 3d implementation

What problem do we want to solve:

● fracture simulations involving multiple, intersecting cracks
● very large problems

Discretization:

● linear and higher order tets
● absolute shifted enrichment for crack surface
● crack tip treated by adaptivity → no tip enrichment

Required implementation steps:

● compute G
● transform lin. system: A*= GTA G, f*=GT f,
● transform nullspace N*=G-1N
● solve A*u*=f* for u* using standard AMG
● transform back Gu* → u



XAMGSolver class - 3d implementation

● Transformation & solver algorithm implemented using 
Generic interface classes for Vector, Matrix, LinearSolver, 
and Preconditioner

● Implemented for Epetra/Trilinos and PETSc backend
○ Added Generic PtAP function
○ Added Generic MatrixMarket output for debugging

● Support for PETSc AMG and ML (Trilinos) precond.
LinAlg backend \ AMG lib PETSc AMG ML (Trilinos)

PETSc X X

Epetra X

● Sets minimal default parameters for each AMG precond.

● Use new XFEM Dofmap to construct G

● Compute nullspace (currently elasticity and Poisson)



Example - 3d implementation

● Setup
○ 100x100x100 unit domain
○ u fixed at top and bottom
○ Circular crack at center, r=90
○ pressure on crack surface

● Discretization
○ Linear Lagrange shape functions → tet4
○ n³ nodes

● Solver
○ Default GMRES Krylov solver and AMG smoothers,
○ Convergence criteria: rel. error < 1.0e-8 
○ Minimum configuration:

1. mlPC->set("aggregation: threshold", 1.0e-7);
2. petscPC->parameters("gamg")["threshold"] = 1.0e-7;
3. petscPC->parameters("ml")["threshold"] = 1.0e-7;



Preliminary results - 3d implementation

Comments:

● performance gain ~ problem size
● performance gain ~ crack size

○ no cracks → standard FE (not shown here)



Preliminary results - 3d implementation

Comments:

● transformation related computation times relatively small
● preconditioners must be tweaked individually

○ even better performance with block-smoother → ToDo



Summary - 3d implementation

Summary: 

3D FEniCS implementation works as expected based on 
theory and 2d results!

ToDos:

● adapt AMG configurations to problem (Block-GS, aggr. …)
● parallelization
● branching cracks
● replace matrix multiplication with “implicit G”

More details on the method and its properties:
A. Gerstenberger and R. Tuminaro, An algebraic multigrid approach to solve 
extended finite element method based fracture problems, Int. J. Numer. Meth. 
Engng., Vol. 94(3), 248--272, 2013, DOI: 10.1002/nme.4442

More about the 3d FEniCS implementation:
→ source code will be in FEniCS dev at some point


