2

3

- ε

4

N1 ${ }_{1}^{f}$

$$
\mathcal{P}_{1}^{-} \Lambda^{2}\left(\Delta_{3}\right)
$$

$$
4 \times \underbrace{\mathcal{P}_{0} \Lambda^{0}\left(\Delta_{2}\right)}_{1}=4
$$

("N1F", tetrahedron, 1)

- $\overline{\text { D }}$

5

1

dPo

$$
\mathcal{P}_{1}^{-} \Lambda^{3}\left(\Delta_{3}\right)
$$

$$
1 \times \underbrace{\mathcal{P}_{0} \Lambda^{0}\left(\Delta_{3}\right)}_{1}=1
$$

("DP", tetrahedron, 0)

6

7

20
N1 ${ }_{2}^{e}$

$$
\mathcal{P}_{2}^{-} \Lambda^{1}\left(\Delta_{3}\right)
$$

$$
6 \times \underbrace{\mathcal{P}_{1} \Lambda^{0}\left(\Delta_{1}\right)}_{2}+4 \times \underbrace{\mathcal{P}_{0} \Lambda^{1}\left(\Delta_{2}\right)}_{2}=20
$$

("N1E", tetrahedron, 2)

8

$$
4 \times \underbrace{\mathcal{P}_{1} \Lambda^{0}\left(\Delta_{2}\right)}_{3}+1 \times \underbrace{\mathcal{P}_{0} \Lambda^{1}\left(\Delta_{3}\right)}_{3}=15
$$

("N1F", tetrahedron, 2)

9

4
dP1
$\mathcal{P}_{2}^{-} \Lambda^{3}\left(\Delta_{3}\right)$

$$
1 \times \underbrace{\mathcal{P}_{1} \Lambda^{0}\left(\Delta_{3}\right)}_{4}=4
$$

("DP", tetrahedron, 1)

-. 6

\qquad

10

J

45
$\mathbf{N 1}_{3}^{\mathrm{e}}$

$$
\mathcal{P}_{3}^{-} \Lambda^{1}\left(\Delta_{3}\right)
$$

$$
6 \times \underbrace{\mathcal{P}_{2} \Lambda^{0}\left(\Delta_{1}\right)}_{3}+4 \times \underbrace{\mathcal{P}_{1} \Lambda^{1}\left(\Delta_{2}\right)}_{6}+1 \times \underbrace{\mathcal{P}_{0} \Lambda^{2}\left(\Delta_{3}\right)}_{3}=45
$$

("N1E", tetrahedron, 3)

-1

K

10

$\mathcal{P}_{3}^{-} \Lambda^{3}\left(\Delta_{3}\right)$

$$
1 \times \underbrace{\mathcal{P}_{2} \Lambda^{0}\left(\Delta_{3}\right)}_{10}=10
$$

("DP", tetrahedron, 2)

- H

A

$\mathcal{P}_{r}^{-} \Lambda^{k}$

The shape function space for $\mathcal{P}_{r}^{-} \Lambda^{k}$ is

$$
\mathcal{P}_{r-1} \Lambda^{k}+\kappa \mathcal{P}_{r-1} \Lambda^{k+1}
$$

where κ is the Koszul differential. ${ }^{7}$ It includes the full polynomial space $\mathcal{P}_{r-1} \Lambda^{k}$, is included in $\mathcal{P}_{r} \Lambda^{k}$, and has dimension

$$
\operatorname{dim} \mathcal{P}_{r}^{-} \Lambda^{k}\left(\Delta_{n}\right)=\binom{r+n}{r+k}\binom{r+k-1}{k}
$$

The degrees of freedom are given on faces f of dimension $d \geq k$ by moments of the trace weighted by a full polynomial space:

$$
u \mapsto \int_{f}\left(\operatorname{tr}_{f} u\right) \wedge q, \quad q \in \mathcal{P}_{r+k-d-1} \wedge^{d-k}(f)
$$

The spaces with constant degree r form a complex:

$$
\mathcal{P}_{r}^{-} \Lambda^{0} \xrightarrow{d} \mathcal{P}_{r} \Lambda^{1} \xrightarrow{d} \cdots \xrightarrow{d} \mathcal{P}_{r}-\Lambda^{n} .
$$

$$
\because
$$

2

C

3

12

N2 ${ }_{1}^{e}$
$\mathcal{P}_{1} \Lambda^{1}\left(\Delta_{3}\right)$
$6 \times \underbrace{\mathcal{P}_{1}^{-} \Lambda^{0}\left(\Delta_{1}\right)}_{2}=12$
("N2E", tetrahedron, 1)
C. ε

4

N2 ${ }_{1}^{f}$
$\mathcal{P}_{1} \Lambda^{2}\left(\Delta_{3}\right)$

$$
4 \times \underbrace{\mathcal{P}_{1}^{-} \Lambda^{0}\left(\Delta_{2}\right)}_{3}=12
$$

("N2F", tetrahedron, 1)

c \quad I

5

4
dP1
$\mathcal{P}_{1} \Lambda^{3}\left(\Delta_{3}\right)$
$1 \times \underbrace{\mathcal{P}_{1}^{-} \Lambda^{0}\left(\Delta_{3}\right)}_{4}=4$
("DP", tetrahedron, 1)

\therefore. 5

$6 P$

7

30
$\mathbf{N 2}_{2}^{e}$
$\mathcal{P}_{2} \Lambda^{1}\left(\Delta_{3}\right)$
$6 \times \underbrace{\mathcal{P}_{2}^{-} \Lambda^{0}\left(\Delta_{1}\right)}_{3}+4 \times \underbrace{\mathcal{P}_{1}^{-} \Lambda^{1}\left(\Delta_{2}\right)}_{3}=30$
("N2E", tetrahedron, 2)

8

$\mathbf{N 2}_{2}^{\mathbf{f}} \quad \mathcal{P}_{2} \Lambda^{2}\left(\Delta_{3}\right)$

$$
4 \times \underbrace{\mathcal{P}_{2}^{-} \Lambda^{0}\left(\Delta_{2}\right)}_{6}+1 \times \underbrace{\mathcal{P}_{1}^{-} \Lambda^{1}\left(\Delta_{3}\right)}_{6}=30
$$

("N2F", tetrahedron, 2)

9

10

dP_{2}

$\mathcal{P}_{2} \Lambda^{3}\left(\Delta_{3}\right)$

$$
1 \times \underbrace{\mathcal{P}_{2}^{-} \Lambda^{0}\left(\Delta_{3}\right)}_{10}=10
$$

("DP", tetrahedron, 2)

c. 6

10

- OI

JP

60

N2 ${ }_{3}^{e}$

$$
\mathcal{P}_{3} \Lambda^{1}\left(\Delta_{3}\right)
$$

$6 \times \underbrace{\mathcal{P}_{3}^{-} \Lambda^{0}\left(\Delta_{1}\right)}_{4}+4 \times \underbrace{\mathcal{P}_{2}^{-} \Lambda^{1}\left(\Delta_{2}\right)}_{8}+1 \times \underbrace{\mathcal{P}_{1}^{-} \Lambda^{2}\left(\Delta_{3}\right)}_{4}=60$
("N2E", tetrahedron, 3)
1

K

20

dP_{3}

$\mathcal{P}_{3} h^{3}\left(\Delta_{3}\right)$

$$
1 \times \underbrace{\mathcal{P}_{3}^{-} \Lambda^{0}\left(\Delta_{3}\right)}_{20}=20
$$

("DP", tetrahedron, 3)

$$
\text { c } \mathrm{H}
$$

A

$\mathcal{P}_{\mathrm{r}} \wedge^{k}$

The shape function space for $\mathcal{P}_{r} \Lambda^{k}$ consists of all differential k-forms with polynomial coefficients of degree at most r, and has dimension

$$
\operatorname{dim} \mathcal{P}_{r} \Lambda^{k}\left(\Delta_{n}\right)=\binom{r+n}{r+k}\binom{r+k}{k} .
$$

The degrees of freedom are given on faces f of dimension $d \geq k$ by moments of the trace weighted by a \mathcal{P}_{r}^{-}space:

$$
u \mapsto \int_{f}\left(\operatorname{tr}_{f} u\right) \wedge q, \quad q \in \mathcal{P}_{r+k-d}^{-} \wedge^{d-k}(f)
$$

The spaces with decreasing degree r form a complex:

$$
\mathcal{P}_{r} \Lambda^{0} \xrightarrow{d} \mathcal{P}_{r-1} \Lambda^{1} \xrightarrow{d} \cdots \xrightarrow{d} \mathcal{P}_{r-n} \Lambda^{n} .
$$

$$
\therefore \forall
$$

2

Z

3

$$
12 \times \underbrace{\mathcal{Q}_{0}^{-} \Lambda^{0}\left(\square_{1}\right)}_{1}=12
$$

("NCE", hexahedron, 1)

- ε

4

6
$\mathbf{N c}_{1}^{f}$
$\mathcal{Q}_{1}^{-} \Lambda^{2}\left(\square_{3}\right)$

$$
6 \times \underbrace{\mathcal{Q}_{0}^{-} \Lambda^{0}\left(\square_{2}\right)}_{1}=6
$$

("NCF", hexahedron, 1)

-

\qquad

5

1
$\mathcal{Q}_{1}^{-} \Lambda^{3}\left(\square_{3}\right)$

$$
1 \times \underbrace{\mathcal{Q}_{0}^{-} \Lambda^{0}\left(\square_{3}\right)}_{1}=1
$$

("DQ", hexahedron, 0)

- 5

60

\mathbf{O}_{2}

$$
\mathcal{Q}_{2}^{-} \Lambda^{0}\left(\square_{3}\right)
$$

("Q", hexahedron, 2)

7

$$
12 \times \underbrace{\mathcal{Q}_{1}^{-} \Lambda^{0}\left(\square_{1}\right)}_{2}+6 \times \underbrace{\mathcal{Q}_{1}^{-} \Lambda^{1}\left(\square_{2}\right)}_{4}+1 \times \underbrace{\mathcal{Q}_{1}^{-} \Lambda^{2}\left(\square_{3}\right)}_{6}=54
$$

("NCE", hexahedron, 2)

-1

80

36
Nc_{2}^{f}
$\mathcal{Q}_{2}^{-} \Lambda^{2}\left(\square_{3}\right)$

$$
6 \times \underbrace{\mathcal{Q}_{1}^{-} \Lambda^{0}\left(\square_{2}\right)}_{4}+1 \times \underbrace{\mathcal{Q}_{1}^{-} \Lambda^{1}\left(\square_{3}\right)}_{12}=36
$$

("NCF", hexahedron, 2)

$90-$

8
dO_{1}
$\mathcal{Q}_{2}^{-} \Lambda^{3}\left(\square_{3}\right)$

$$
1 \times \underbrace{\mathcal{Q}_{1}^{-} \Lambda^{0}\left(\square_{3}\right)}_{8}=8
$$

("DQ", hexahedron, 1)
\qquad
|

10 -

64

$$
\mathcal{Q}_{3}^{-} \Lambda^{0}\left(\square_{3}\right)
$$

$$
8 \times \underbrace{Q_{2}^{-} \Lambda^{0}\left(\square_{0}\right)}_{1}+12 \times \underbrace{\mathcal{Q}_{2}^{-} \Lambda^{1}\left(\square_{1}\right)}_{2}+6 \times \underbrace{\mathcal{Q}_{2}^{-} \Lambda^{2}\left(\square_{2}\right)}_{4}+1 \times \underbrace{\mathcal{Q}_{2}^{-} \Lambda^{3}\left(\square_{3}\right)}_{8}=64
$$

("Q", hexahedron, 3)
\qquad

J

144
$\mathbf{N c}_{3}^{e}$
$\mathcal{Q}_{3}^{-} \Lambda^{1}\left(\square_{3}\right)$

("NCE", hexahedron, 3)
-61

K

27

$\mathcal{Q}_{3}^{-} \Lambda^{3}\left(\square_{3}\right)$

$$
1 \times \underbrace{\mathcal{Q}_{2}^{-} \Lambda^{0}\left(\square_{3}\right)}_{27}=27
$$

("DQ", hexahedron, 2)

- H

-

A

$Q_{r}^{-} \Lambda^{k}$

This family is constructed from the complex of 1 -dimensional finite elements using a tensor product construction. ${ }^{10}$ The shape function space on the unit cube $\square_{n}=I^{n}$ is given by

$$
\bigoplus_{\sigma \in \Sigma(k, n)}\left[\bigotimes_{i=1}^{n} \mathcal{P}_{r-\delta_{i, \sigma}}(I)\right] d x^{\sigma_{1}} \wedge \cdots \wedge d x^{\sigma_{k}},
$$

where $\Sigma(k, n)$ denotes the increasing maps $\{1, \ldots, k\} \rightarrow\{1, \ldots, n\}$. Its dimension is $\operatorname{dim} \mathcal{Q}_{r} \Lambda^{k}\left(\square_{n}\right)=\binom{n}{k} r^{k}(r+1)^{n-k}$. The degrees of freedom are

$$
u \mapsto \int_{f}\left(\operatorname{tr}_{f} u\right) \wedge q . \quad q \in \mathcal{Q}_{r-1}^{-} \wedge^{d-k}(f)
$$

The spaces with constant degree r form a complex:

$$
\mathcal{Q}_{r}^{-} \Lambda^{0} \xrightarrow{d} \mathcal{Q}_{r}^{-} \Lambda^{1} \xrightarrow{d} \cdots \xrightarrow{d} \mathcal{Q}_{r}^{-} \Lambda^{n} .
$$

2

8

$$
8 \times \underbrace{\mathcal{P}_{1} \wedge^{0}\left(\square_{0}\right)}_{1}=8
$$

("S", hexahedron, 1)

1

3

$$
\mathcal{S}_{1} \Lambda^{1}\left(\square_{3}\right)
$$

$$
12 \times \underbrace{\mathcal{P}_{1} \Lambda^{0}\left(\square_{1}\right)}_{2}=24
$$

("AAE", hexahedron, 1)

S ε

4

18

$$
6 \times \underbrace{\mathcal{P}_{1} \Lambda^{0}\left(\square_{2}\right)}_{3}=18
$$

$\mathcal{S}_{1} \Lambda^{2}\left(\square_{3}\right)$
("AAF", hexahedron, 1)

Sモ

5

4
$\mathcal{S}_{1} \Lambda^{3}\left(\square_{3}\right)$

$$
1 \times \underbrace{\mathcal{P}_{1} \wedge^{0}\left(\square_{3}\right)}_{4}=4
$$

("DPC", hexahedron, 1)

$6 s$

\mathbf{S}_{2} $\mathcal{S}_{2} \wedge^{0}\left(\square_{3}\right)$

$$
8 \times \underbrace{\mathcal{P}_{2} \Lambda^{0}\left(\square_{0}\right)}_{1}+12 \times \underbrace{\mathcal{P}_{0} \Lambda^{1}\left(\square_{1}\right)}_{1}=20
$$

("S", hexahedron, 2)

7

48 $\mathcal{S}_{2} 1^{1}\left(\square_{3}\right)$
$\mathrm{AA}_{2}^{\mathrm{e}}$

$$
12 \times \underbrace{\mathcal{P}_{2} \Lambda^{0}\left(\square_{1}\right)}_{3}+6 \times \underbrace{\mathcal{P}_{0} \Lambda^{1}\left(\square_{2}\right)}_{2}=48
$$

("AAE", hexahedron, 2)

8

$$
6 \times \underbrace{\mathcal{P}_{2} \Lambda^{0}\left(\square_{2}\right)}_{6}+1 \times \underbrace{\mathcal{P}_{0} \Lambda^{1}\left(\square_{3}\right)}_{3}=39
$$

39

$\mathcal{S}_{2} \Lambda^{2}\left(\square_{3}\right)$
("AAF", hexahedron, 2)

9

10
$\mathcal{S}_{2} \Lambda^{3}\left(\square_{3}\right)$
$d \mathrm{Pc}_{2}$

$$
1 \times \underbrace{\mathcal{P}_{2} \Lambda^{0}\left(\square_{3}\right)}_{10}=10
$$

("DPC", hexahedron, 2)

1

10 s

32
S_{3}

$\mathcal{S}_{3} \Lambda^{0}\left(\square_{3}\right)$

$$
8 \times \underbrace{\mathcal{P}_{3} \Lambda^{0}\left(\square_{0}\right)}_{1}+12 \times \underbrace{\mathcal{P}_{1} \Lambda^{1}\left(\square_{1}\right)}_{2}=32
$$

("S", hexahedron, 3)

SOI

J

84
$\mathrm{AA}_{3}^{\mathrm{e}}$
$\mathcal{S}_{3} \Lambda^{1}\left(\square_{3}\right)$
$12 \times \underbrace{\mathcal{P}_{3} \Lambda^{0}\left(\square_{1}\right)}_{4}+6 \times \underbrace{\mathcal{P}_{1} \Lambda^{1}\left(\square_{2}\right)}_{6}=84$
("AAE", hexahedron, 3)
si

K

20

dPc ${ }_{3}$

$\mathcal{S}_{3} \Lambda^{3}\left(\square_{3}\right)$

$$
1 \times \underbrace{\mathcal{P}_{3} \Lambda^{0}\left(\square_{3}\right)}_{20}=20
$$

("DPC", hexahedron, 3)

> SH

A

$\mathcal{S}_{r} \Lambda^{k}$

The shape function space for $\mathcal{S}_{r} \Lambda^{k}$ is given by

$$
\mathcal{P}_{r} \Lambda^{k} \oplus \bigoplus_{\ell \geq 1}\left[\kappa \mathcal{H}_{r+\ell-1, \ell} \Lambda^{k+1} \oplus \mathrm{~d} \kappa \mathcal{H}_{r+\ell, \ell} \Lambda^{k}\right],
$$

where $\mathcal{H}_{r, 1}, \Lambda^{k}$ consists of homogeneous polynomial k-forms of degree r which are linear and undifferentiated in at least ℓ variables. ${ }^{11}$ Its dimension is $\operatorname{dim} \mathcal{S}_{r} \Lambda^{k}\left(\square_{n}\right)=$ $\sum_{d \geq k} 2^{n-d}\binom{n}{d}\binom{r-d+2 k}{d}\binom{d}{k}$. The degrees of freedom are

$$
u \mapsto \int_{f}\left(\operatorname{tr}_{f} u\right) \wedge q, \quad q \in \mathcal{P}_{r-2(d-k)} \wedge^{d-k}(f) .
$$

The spaces with decreasing degree r form a complex:

$$
\mathcal{S}_{r} \Lambda^{0} \xrightarrow{d} \mathcal{S}_{r-1} \Lambda^{1} \xrightarrow{d} \cdots \xrightarrow{d} \mathcal{S}_{r-n} \Lambda^{n} .
$$

$$
\text { S } V
$$

Periodic Table of the Finite Elements

These playing cards depict the 3D elements for $r=1,2,3$ of the Periodic Table of the Finite Elements. Use these cards for reference or as you would normal playing cards with the following mapping:

Legend

Element with degrees of freedom (DOFs)

Concept and scientific content: Douglas N. Arnold (University of Minnesota) and Anders Logg (Chalmers University of Technology). Graphic design: Mattias Schläger. The production has been supported by Simula Research Laboratory and is partially based on work supported by the U.S. National Science Foundation under grant DMS-1115291. Findings do not necessarily represent the views of Simula or of the NSF. Produced in 2014 and licensed under a Creative Commons Attribution-ShareAlike 4.0 International license.

femtable.org

K
University of Minnesota

